75 resultados para SELF-DIFFUSION
Resumo:
Structural and rheological features of a series of molecular hydrogels formed by synthetic bile salt analogues have been scrutinized. Among seven gelators, two are neutral compounds, while the others are cationic systems among which one is a tripodal steroid derivative. Despite the fact that the chemical structures are closely related, the variety of physical characteristics is extremely large in the structures of the connected fibers (either plain cylinders or ribbons), in the dynamical modes for stress relaxation of the associated SAFINs, in the scaling laws of the shear elasticity (typical of either cellular solids or fractal floc-like assemblies), in the micron-scale texture and the distribution of ordered domains (spherulites, crystallites) embedded in a random mesh, in the type of nodal zones (either crystalline-like, fiber entanglements, or bundles), in the evolution of the distribution and morphology of fibers and nodes, and in the sensitivity to added salt. SANS appears to be a suitable technique to infer all geometrical parameters defining the fibers, their interaction modes, and the volume fraction of nodes in a SAFIN. The tripodal system is particularly singular in the series and exhibits viscosity overshoots at the startup of shear flows, an “umbrella-like” molecular packing mode involving three molecules per cross section of fiber, and scattering correlation peaks revealing the ordering and overlap of 1d self-assembled polyelectrolyte species.
Resumo:
An exact solution to the unsteady convective diffusion equation for the dispersion of a solute in a fully developed laminar flow in an annular pipe is obtained. Generalized dispersion model which is valid for all time after the injection of solute in the flow is used to evaluate the dispersion coefficients as functions of time. It is observed that the axial dispersion decreases with an increase in the radius of the inner cylinder.
Resumo:
We demonstrate a chain length dependent crossover in the structural properties of linear hydrocarbon (n-alkane) chains using detailed atomistic simulations in explicit water. We identify a number of exotic structures of the polymer chain through energy minimization of representative snapshots collected from molecular dynamics trajectory. While the collapsed state is ring-like (circular) for small chains (CnH2n+2; n <= 20) and spherical for very long ones (n = 100), we find the emergence of ordered helical structures at intermediate lengths (n similar to 40). We find different types of disordered helices and toroid-like structures at n = 60. We also report a sharp transition in the stability of the collapsed state as a function of the chain length through relevant free energy calculations. While the collapsed state is only marginally metastable for C20H42, a clear bistable free energy surface emerges only when the chain is about 30 monomers long. For n = 30, the polymer exhibits an intermittent oscillation between the collapsed and the coil structures, characteristic of two stable states separated by a small barrier.
Resumo:
Theoretical approaches are of fundamental importance to predict the potential impact of waste disposal facilities on ground water contamination. Appropriate design parameters are generally estimated be fitting theoretical models to data gathered from field monitoring or laboratory experiments. Transient through-diffusion tests are generally conducted in the laboratory to estimate the mass transport parameters of the proposed barrier material. Thes parameters are usually estimated either by approximate eye-fitting calibration or by combining the solution of the direct problem with any available gradient-based techniques. In this work, an automated, gradient-free solver is developed to estimate the mass transport parameters of a transient through-diffusion model. The proposed inverse model uses a particle swarm optimization (PSO) algorithm that is based on the social behavior of animals searching for food sources. The finite difference numerical solution of the forward model is integrated with the PSO algorithm to solve the inverse problem of parameter estimation. The working principle of the new solver is demonstrated and mass transport parameters are estimated from laboratory through-diffusion experimental data. An inverse model based on the standard gradient-based technique is formulated to compare with the proposed solver. A detailed comparative study is carried out between conventional methods and the proposed solver. The present automated technique is found to be very efficient and robust. The mass transport parameters are obtained with great precision.
Resumo:
A numerical analysis of the gas dynamic structure of a two-dimensional laminar boundary layer diffusion flame over a porous flat plate in a confined flow is made on the basis of the familiar boundary layer and flame sheet approximations neglecting buoyancy effects. The governing equations of aerothermochemistry with the appropriate boundary conditions are solved using the Patankar-Spalding method. The analysis predicts the flame shape, profiles of temperature, concentrations of variousspecies, and the density of the mixture across the boundary layer. In addition, it also predicts the pressure gradient in the flow direction arising from the confinement ofthe flow and the consequent velocity overshoot near the flame surface. The results of thecomputation performed for an n-pentane-air system are compared with experimental data andthe agreement is found to be satisfactory.
Resumo:
Five cyclobutanethiones with different chromophores at the 3-position were examined for triplet state behaviour in benzene using laser excitation into their low lying nπ*1 band systems. A weak transient absorption attributable to the triplet state is observed in all these cases. Results concerning triplet lifetimes, intersystem crossing yields (S1 → T1), self-quenching kinetics and kinetics of energy transfer to all-trans-1,6-diphenyl-1,3,5-hexatriene and oxygen and quenching by di-t-butyl nitroxide (DTBN) are presented. Intersystem crossing yields estimated with reference to p,p′-dimethoxythiobenzophenone are roughly unity in all five cases. Self-quenching rates are found to be less than diffusion limited and this is attributed to steric crowding at the α positions (dimethyl group). The rates of oxygen and DTBN quenching compare well with those reported for several other thiones in the literature. No transients other than the triplet were detected in the above cyclobutane-thiones.
Resumo:
We report a multilayer film of poly(vinyl alcohol) (PVA)-borate complex and chitosan by using a layer-by-layer approach. PVA is an uncharged polymer, but hydroxyl functional groups of PVA can be crosslinked by using borax as a cross-linking agent. As a result electrostatic charges and intra- and interchain cross-links are introduced in the PVA chain and provide physically cross-linked networks. The PVA-borate was then deposited on a flat Substrate as well as on colloidal particles with chitosan as an oppositely charged polyelectrolyte. Quartz crystal microbalance. scanning electron microscopy, and atomic force microscopy were used to follow the growth of thin film oil flat substrate. Analogous experiments were performed on melamine formaldehyde colloidal particles (3-3.5 mu m) to quantify the process for the preparation of hollow rnicrocapsules. Removal of the core in 0.1 N HCI results in hollow microcapsules. Characterization of microcapsules by transmission electron microscopy revealed formation of stable microcapsules. Further, self-assembly of PVA-borate/chitosan was loaded with the anticancer drug doxorubicin, and release rates were determined at different pH Values to highlight the drug delivery potential of this system.
Resumo:
Abstract is not available.
Resumo:
The self-similar solution of the unsteady laminar incompressible two-dimensional and axisymmetric stagnation point boundary layers for micropolar fluids governing the flow and heat transfer problem has been obtained when the free stream velocity and the square of the mass transfer vary inversely as a linear function of time. The nonlinear ordinary differential equations governing the flow have been solved numerically using a quasilinear finite-Difference scheme. The results indicate that the coupling parameter, mass transfer and unsteadiness in the free stream velocity strongly affect the skin friction, microrotation gradient and heat transfer whereas the effect of microrotation parameter is strong only on the microrotation gradient. The heat transfer is strongly dependent on the prandtl number whereas the skin friction gradient are unaffected by it.
Resumo:
The design and two-component [2 + 3] self-assembly of a series of new organometallic molecular prisms (3a-d) are described. Assemblies 3a,b incorporate 4,4',4'-tris[ethynyl-trans-Pt(PEt3)(2)]triphenylamine (1a) containing a Pt-ethynyl functionality as tritopic planar acceptor and organic ``clips'' 2a and 2b, respectively [where 2a = 1,3-bis(3-pyridyl)isophthalic amide; 2b= 1,3-bis(ethynyl-3-pyridyl)benzene]. In a complementary approach all organic tritopic planar donor ligand 2c [2c 4,4',4'-tris(4-pyridylethynyl)triphenylamine] was assembled with all organometallic ``clip'', 1,8-bis[{trans-Pt(PEt3) (2)(NO3)}ethynyl]anthracene (1b), to obtain prism 3c. A organometallic carbon-centered acceptor, 1,1,1- tris[4-{trans-Pt(PEt3)(2)(NO3)}ethynylphenyl]ethane (1c), has been prepared, and its prism derivative (3d) using an organic `clip'' is prepared. Assemblies (3a-d) were characterized by multinuclear NMR spectroscopy, electrospray ionization mass spectroscopy, and elemental analysis. 3a-d showed fluorescence behavior in solution, and quenching of fluorescence intensity (3a,3c-d) was noticed upon addition of TNT (2,4,6-trinitrotoluene), a common constituent of many commercial explosives. A thin film of the assembly 3d made by spin coating of a solution of 3 x 10(-5) M in DMF on it 1 cm(2) quartz plate showed fluorescence response to the vapor of TNT.
Resumo:
Three distinct coordination complexes, viz., [Co(imi)(2)(tmb)(2)] (1) [where imi = imidazole], {[Ni(tmb)(2)(H2O)(3)]center dot 2H(2)O}(n) (2) and [Cu-2(mu-tmb)(4)(CH3OH)(2)] (3), have been synthesized hydrothermally by the reactions of metal acetates,2,4,6-trimethylbenzoic acid (Htmb) and with or without appropriate amine. The Ni analogue of 1 and the Co analogue of 2 have also been synthesized. X-ray single-crystal diffraction suggests that complex 1 represents discrete mononuclear species and complex 2 represents a 1D chain coordination polymer in which the Ni(H) ions are connected by the bridging water molecules. Complex 3 represents a neutral dinuclear complex. In 1, the central metal ions are associated by the carboxylate moiety and imidazole ligands, whereas the central metal atom is coordinated to the carboxylate moiety and the respective solvent molecules in 2 and 3. In 3, the four 2,4,6-trimethylbenzoate moieties act as a bridge connecting two copper (11) ions and the 0 atoms of methanol coord geometry, with the methanol molecule at the apical position. In all the three structures the central metal atom sits on a crystallographic inversion centre. In all the cases, the coordination entities are further organized via hydrogen bonding interactions to generate multifarious supramolecular networks. Complexes 1, 2 and 3 have also been characterized by spectroscopic (UV/Vis and IR) and thermal analysis (TGA). In addition, the complexes were found to exhibit antimicrobial activity. The magnetic susceptibility measurements, measured from 8 to 300 K, revealed antiferromagnetic interactions between the Co(II) ions in compound 1 and the Ni(II) ions in la, respectively.
Resumo:
Self-tuning is applied to the minimum variance control of non-linear multivariable systems which can be characterized by a ' multivariable Hammerstein model '. It is also shown that such systems are not amenable to self-tuning control if control costing is to be included in the performance criterion.
Resumo:
In this paper, we report the synthesis and self assembly of various sizes of ZnO nanocrystals. While the crystal structure and the quantum confinement of nanocrystals were mainly characterized using XRD and UV absorption spectra, the self assembly and long range ordering were studied using scanning tunneling microscopy after spin casting the nanocrystal film on the highly oriented pyrolytic graphite surface. We observe self assembly of these nanocrystals over large areas making them ideal candidates for various potential applications. Further, the electronic structure of the individual dots is obtained from the current-voltage characteristics of the dots using scanning tunneling spectroscopy and compared with the density of states obtained from the tight binding calculations. We observe an excellent agreement with the experimentally obtained local density of states and the theoretically calculated density of states.
Resumo:
Two components self-assembly of a Pd-4 neutral molecular rectangle driven by Pd-O bond coordination has been achieved and this pi-electron rich rectangle shows fluorescence quenching in presence of nitroaromatics, which are the chemical signatures of many explosives.