157 resultados para SEA WAVES
Resumo:
The surface water waves are "modal" waves in which the "physical space" (t, x, y, z) is the product of a propagation space (t, x, y) and a cross space, the z-axis in the vertical direction. We have derived a new set of equations for the long waves in shallow water in the propagation space. When the ratio of the amplitude of the disturbance to the depth of the water is small, these equations reduce to the equations derived by Whitham (1967) by the variational principle. Then we have derived a single equation in (t, x, y)-space which is a generalization of the fourth order Boussinesq equation for one-dimensional waves. In the neighbourhood of a wave froat, this equation reduces to the multidimensional generalization of the KdV equation derived by Shen & Keller (1973). We have also included a systematic discussion of the orders of the various non-dimensional parameters. This is followed by a presentation of a general theory of approximating a system of quasi-linear equations following one of the modes. When we apply this general method to the surface water wave equations in the propagation space, we get the Shen-Keller equation.
Resumo:
The solution for a line source of oscillatory strength kept at the origin in a wall bounding a semi-infinite viscous imcompressible stratified fluid is presented in an integral form. The behaviour of the flow at far field and near field is studied by an asymptotic expansion procedure. The streamlines for different parameters are drawn and discussed. The real characteristic straight lines present in the inviscid problem are modified by the viscosity and the solutions obtained are valid even at the resonance frequency.
Resumo:
The special class of quasi-simple wave solutions is studied for the system of partial differential equations governing inviscid acoustic gravity waves. It is shown that these traveling wave solutions do not admit shocks. Periodic solutions are found to exist when there is no propagation in the vertical direction. The solutions for some particular cases are depicted graphically. Physics of Fluids is copyrighted by The American Institute of Physics.
Resumo:
By using the method of operators of multiple scales, two coupled nonlinear equations are derived, which govern the slow amplitude modulation of surface gravity waves in two space dimensions. The equations of Davey and Stewartson, which also govern the two-dimensional modulation of the amplitude of gravity waves, are derived as a special case of our equations. For a fully dispersed wave, symmetric about a point which moves with the group velocity, the coupled equations reduce to a nonlinear Schrödinger equation with extra terms representing the effect of the curvature of the wavefront.
Resumo:
Time reversal active sensing using Lamb waves is investigated for health monitoring of a metallic structure. Experiments were conducted on an aluminum plate to study the time reversal behavior of A(0) and S-0 Lamb wave modes under narrow band and broad band pulse excitation. Damage in the form of a notch was introduced in the plate to study the changes in the characteristics of the time reversed Lamb wave modes experimentally. Time-frequency analysis of the time reversed signal was carried out to extract the damage information. A measure of damage based on wavelet transform was derived to quantify the hidden damage information in the time reversed signal. It has been shown that time reversal can be used to achieve temporal recompression of Lamb waves under broadband signal excitation. Further, the broad band excitation can also improve the resolution of the technique in detecting closely located defects. This is demonstrated by picking up the reflection of waves from the edge of the plate, from a defect close to the edge of the plate and from defects located near to each other. This study shows the effectiveness of Lamb wave time reversal for temporal recompression of dispersive Lamb waves for damage detection in health monitoring applications. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Extensive measurements of aerosol radiative and microphysical properties were made at an island location, Minicoy (8.3 degrees N, 73.04 degrees E) in the southern Arabian Sea. A large variability in aerosol characteristics associated with changes in air mass and precipitation characteristics was observed. Six distinct transport pathways were identified on the basis of cluster analysis. The Indo-Gangetic Plain, along with the northern Arabian Sea and west Asia (NWA), was identified to be the region having the highest potential for aerosol mass loading at the island. This estimate is based on the concentration weighted trajectory as well as cluster analysis. Dust transport from the NWA region was found to make a substantial contribution to the supermicron mass fraction. The black carbon mass mixing ratios observed were the lowest compared to previous measurements over this region. Consequently, the atmospheric radiative forcing efficiency was low and was in the range 10-28 W m(-2).
Resumo:
The sea level pressure (SLP) variability in 30-60 day intraseasonal timescales is investigated using 25 years of reanalysis data addressing two issues. The first concerns the non-zero zonal mean component of SLP near the equator and its meridional connections, and the second concerns the fast eastward propagation (EP) speed of SLP compared to that of zonal wind. It is shown that the entire globe resonates with high amplitude wave activity during some periods which may last for few to several months, followed by lull periods of varying duration. SLP variations in the tropical belt are highly coherent from 25A degrees S to 25A degrees N, uncorrelated with variations in mid latitudes and again significantly correlated but with opposite phase around 60A degrees S and 65A degrees N. Near the equator (8A degrees S-8A degrees N), the zonal mean contributes significantly to the total variance in SLP, and after its removal, SLP shows a dominant zonal wavenumber one structure having a periodicity of 40 days and EP speeds comparable to that of zonal winds in the Indian Ocean. SLP from many of the atmospheric and coupled general circulation models show similar behaviour in the meridional direction although their propagation characteristics in the tropical belt differ widely.
Resumo:
An Ocean General Circulation Model of the Indian Ocean with high horizontal (0.25 degrees x 0.25 degrees) and vertical (40 levels) resolutions is used to study the dynamics and thermodynamics of the Arabian Sea mini warm pool (ASMWP), the warmest region in the northern Indian Ocean during January-April. The model simulates the seasonal cycle of temperature, salinity and currents as well as the winter time temperature inversions in the southeastern Arabian Sea (SEAS) quite realistically with climatological forcing. An experiment which maintained uniform salinity of 35 psu over the entire model domain reproduces the ASMWP similar to the control run with realistic salinity and this is contrary to the existing theories that stratification caused by the intrusion of low-salinity water from the Bay of Bengal into the SEAS is crucial for the formation of ASMWP. The contribution from temperature inversions to the warming of the SEAS is found to be negligible. Experiments with modified atmospheric forcing over the SEAS show that the low latent heat loss over the SEAS compared to the surroundings, resulting from the low winds due to the orographic effect of Western Ghats, plays an important role in setting up the sea surface temperature (SST) distribution over the SEAS during November March. During March-May, the SEAS responds quickly to the air-sea fluxes and the peak SST during April-May is independent of the SST evolution during previous months. The SEAS behaves as a low wind, heat-dominated regime during November-May and, therefore, the formation and maintenance of the ASMWP is not dependent on the near surface stratification.
Resumo:
Before the onset of the south Asian summer monsoon, sea surface temperature (SST) of the north Indian Ocean warms to 30–32°C. Climatological mean mixed layer depth in spring (March–May) is 10–20 m, and net surface heat flux (Q net ) is 80–100 W m−2 into the ocean. Previous work suggests that observed spring SST warming is small mainly because of (1) penetrative flux of solar radiation through the base of the mixed layer (Q pen ) and (2) advective cooling by upper ocean currents. We estimate the role of these two processes in SST evolution from a two-week Arabian Sea Monsoon Experiment process experiment in April–May 2005 in the southeastern Arabian Sea. The upper ocean is stratified by salinity and temperature, and mixed layer depth is shallow (6 to 12 m). Current speed at 2 m depth is high even under light winds. Currents within the mixed layer are quite distinct from those at 25 m. On subseasonal scales, SST warming is followed by rapid cooling, although the ocean gains heat at the surface: Q net is about 105 W m−2 in the warming phase and 25 W m−2 in the cooling phase; penetrative loss Q pen is 80 W m−2 and 70 W m−2. In the warming phase, SST rises mainly because of heat absorbed within the mixed layer, i.e., Q net minus Q pen ; Q pen reduces the rate of SST warming by a factor of 3. In the second phase, SST cools rapidly because (1) Q pen is larger than Q net and (2) advective cooling is ∼85 W m−2. A calculation using time-averaged heat fluxes and mixed layer depth suggests that diurnal variability of fluxes and upper ocean stratification tends to warm SST on subseasonal timescale. Buoy and satellite data suggest that a typical premonsoon intraseasonal cooling event occurs under clear skies when the ocean is gaining heat through the surface. In this respect, premonsoon SST cooling in the north Indian Ocean is different from that due to the Madden-Julian oscillation or monsoon intraseasonal oscillation.
Resumo:
During the second phase of the Arabian Sea Monsoon Experiment (ARMEX-II), extensive measurements of spectral aerosol optical depth, mass concentration, and mass size distribution of ambient aerosols as well as mass concentration of aerosol black carbon (BC) were made onboard a research vessel during the intermonsoon period (i.e., when the monsoon winds are in transition from northeasterlies to westerlies/ southwesterlies) over the Arabian Sea (AS) adjoining the Indian Peninsula. Simultaneous measurements of spectral aerosol optical depths (AODs) were made at different regions over the adjoining Indian landmass. Mean AODs (at 500-nm wavelength) over the ocean (similar to0.44) were comparable to those over the coastal land (similar to0.47), but were lower than the values observed over the plateau regions of central Indian Peninsula (similar to0.61). The aerosol properties were found to respond distinctly with respect to change in the trajectories, with higher optical depths and flatter AOD spectra associated with trajectories indicating advection from west Asia, and northwest and west-coastal India. On average, BC constituted only similar to2.2% to total aerosol mass compared to the climatological values of similar to6% over the coastal land during the same season. These data are used to characterize the physical properties of aerosols and to assess the resulting short-wave direct aerosol forcing. The mean values were similar to27 W m(-2) at the surface and -12 W m(-2) at the top of the atmosphere (TOA), resulting in a net atmospheric forcing of +15 W m(-2). The forcing also depended on the region from where the advection predominates. The surface and atmospheric forcing were in the range -40 to -57 W m(-2) and +27 to +39 W m(-2), respectively, corresponding to advection from the west Asian and western coastal India where they were as low as -19 and +10 W m(-2), respectively, when the advection was mainly from the Bay of Bengal and from central/peninsular India. In all these cases, the net atmospheric forcing (heating) efficiency was lower than the values reported for northern Indian Ocean during northern winter, which is attributed to the reduced BC mass fraction.
Resumo:
Approximate solutions of the B-G-K model equation are obtained for the structure of a plane shock, using various moment methods and a least squares technique. Comparison with available exact solution shows that while none of the methods is uniformly satisfactory, some of them can provide accurate values for the density slope shock thickness delta n . A detailed error analysis provides explanations for this result. An asymptotic analysis of delta n for largeMach numbers shows that it scales with theMaxwell mean free path on the hot side of the shock, and that their ratio is relatively insensitive to the viscosity law for the gas.
Resumo:
In this paper, an attempt is made to study the influence of external light waves on the thermoelectric power under strong magnetic field (TPSM) in ultrathin films (UFs), quantum wires (QWs) and quantum dots (QDs) of optoelectronic materials whose unperturbed dispersion relation of the conduction electrons are defined by three and two band models of Kane together with parabolic energy bands on the basis of newly formulated electron dispersion laws in each case. We have plotted the TPSM as functions of film thickness, electron concentration, light intensity and wavelength for UFs, QWs and ODs of InSb, GaAs, Hg1-xCdxTe and In1-xGaxAsyP1-y respectively. It appears from the figures that for UFs, the TPSM increases with increasing thickness in quantum steps, decreases with increasing electron degeneracy exhibiting entirely different types of oscillations and changes with both light intensity and wavelength and these two latter types of plots are the direct signature of light waves on opto-TPSM. For QWs, the opto-TPSM exhibits rectangular oscillations with increasing thickness and shows enhanced spiky oscillations with electron concentration per unit length. For QDs, the opto-TPSM increases with increasing film thickness exhibiting trapezoidal variations which occurs during quantum jumps and the length and breadth of the trapezoids are totally dependent on energy band constants. Under the condition of non-degeneracy, the results of opto-TPSM gets simplified into the well-known form of classical TPSM equation which the function of three constants only and being invariant of the signature of band structure.
Resumo:
Polarographic and redox potential measurements on the cupric and cuprous complexes of ethylenediamine and EDTA have been carried out. From the ratio of the stability constants of the cupric and cuprous complexes, and the stability constant of the cupric complex, the stability constant of the cuprous-ethylenediamine complex is obtained. In the case of the EDTA complex it has been possible to obtain only βic/β2ous from the equilibrium concentrations of the cuprous and cupric complexes and the disproportionation constant. The inequalities for the appearance of step reduction waves have been given. The values of the stability constants of the cupric and cuprous complexes determined by the polarographic-redox potential method have been used to explain the appearance of step reduction waves in some systems and the non-appearance in other systems.