57 resultados para Riemann-Liouville fractional operators
Resumo:
The curvature (T)(w) of a contraction T in the Cowen-Douglas class B-1() is bounded above by the curvature (S*)(w) of the backward shift operator. However, in general, an operator satisfying the curvature inequality need not be contractive. In this paper, we characterize a slightly smaller class of contractions using a stronger form of the curvature inequality. Along the way, we find conditions on the metric of the holomorphic Hermitian vector bundle E-T corresponding to the operator T in the Cowen-Douglas class B-1() which ensures negative definiteness of the curvature function. We obtain a generalization for commuting tuples of operators in the class B-1() for a bounded domain in C-m.
Resumo:
The Cubic Sieve Method for solving the Discrete Logarithm Problem in prime fields requires a nontrivial solution to the Cubic Sieve Congruence (CSC) x(3) equivalent to y(2)z (mod p), where p is a given prime number. A nontrivial solution must also satisfy x(3) not equal y(2)z and 1 <= x, y, z < p(alpha), where alpha is a given real number such that 1/3 < alpha <= 1/2. The CSC problem is to find an efficient algorithm to obtain a nontrivial solution to CSC. CSC can be parametrized as x equivalent to v(2)z (mod p) and y equivalent to v(3)z (mod p). In this paper, we give a deterministic polynomial-time (O(ln(3) p) bit-operations) algorithm to determine, for a given v, a nontrivial solution to CSC, if one exists. Previously it took (O) over tilde (p(alpha)) time in the worst case to determine this. We relate the CSC problem to the gap problem of fractional part sequences, where we need to determine the non-negative integers N satisfying the fractional part inequality {theta N} < phi (theta and phi are given real numbers). The correspondence between the CSC problem and the gap problem is that determining the parameter z in the former problem corresponds to determining N in the latter problem. We also show in the alpha = 1/2 case of CSC that for a certain class of primes the CSC problem can be solved deterministically in <(O)over tilde>(p(1/3)) time compared to the previous best of (O) over tilde (p(1/2)). It is empirically observed that about one out of three primes is covered by the above class. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
In this paper, a fractional order proportional-integral controller is developed for a miniature air vehicle for rectilinear path following and trajectory tracking. The controller is implemented by constructing a vector field surrounding the path to be followed, which is then used to generate course commands for the miniature air vehicle. The fractional order proportional-integral controller is simulated using the fundamentals of fractional calculus, and the results for this controller are compared with those obtained for a proportional controller and a proportional integral controller. In order to analyze the performance of the controllers, four performance metrics, namely (maximum) overshoot, control effort, settling time and integral of the timed absolute error cost, have been selected. A comparison of the nominal as well as the robust performances of these controllers indicates that the fractional order proportional-integral controller exhibits the best performance in terms of ITAE while showing comparable performances in all other aspects.
Resumo:
The explicit description of homogeneous operators and localization of a Hilbert module naturally leads to the definition of a class of Cowen-Douglas operators possessing a flag structure. These operators are irreducible. We show that the flag structure is rigid in the sense that the unitary equivalence class of the operator and the flag structure determine each other. We obtain a complete set of unitary invariants which are somewhat more tractable than those of an arbitrary operator in the Cowen-Douglas class. (C) 2014 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved.
Resumo:
Planck scale lepton number violation is an interesting and natural possibility to explain nonzero neutrino masses. We consider such operators in the context of Randall-Sundrum (RS1) scenarios. Implementation of this scenario with a single Higgs localized on the IR brane (standard RS1) is not phenomenologically viable as they lead to inconsistencies in the charged lepton mass fits. In this paper we propose a setup with two Higgs doublets. We present a detailed numerical analysis of the fits to fermion masses and mixing angles. This model solves the issues regarding the fermion mass fits but solutions with consistent electroweak symmetry breaking are highly fine-tuned. A simple resolution is to consider supersymmetry in the bulk and a detailed discussion of which is provided. Constraints from flavor are found to be strong and minimal flavor violation (MFV) is imposed to alleviate them.
Resumo:
Precise experimental implementation of unitary operators is one of the most important tasks for quantum information processing. Numerical optimization techniques are widely used to find optimized control fields to realize a desired unitary operator. However, finding high-fidelity control pulses to realize an arbitrary unitary operator in larger spin systems is still a difficult task. In this work, we demonstrate that a combination of the GRAPE algorithm, which is a numerical pulse optimization technique, and a unitary operator decomposition algorithm Ajoy et al., Phys. Rev. A 85, 030303 (2012)] can realize unitary operators with high experimental fidelity. This is illustrated by simulating the mirror-inversion propagator of an XY spin chain in a five-spin dipolar coupled nuclear spin system. Further, this simulation has been used to demonstrate the transfer of entangled states from one end of the spin chain to the other end.
Resumo:
We consider the rates of relaxation of a particle in a harmonic well, subject to Levy noise characterized by its Levy index mu. Using the propagator for this Levy-Ornstein-Uhlenbeck process (LOUP), we show that the eigenvalue spectrum of the associated Fokker-Planck operator has the form (n + m mu)nu where nu is the force constant characterizing the well, and n, m is an element of N. If mu is irrational, the eigenvalues are all nondegenerate, but rational mu can lead to degeneracy. The maximum degeneracy is shown to be 2. The left eigenfunctions of the fractional Fokker-Planck operator are very simple while the right eigenfunctions may be obtained from the lowest eigenfunction by a combination of two different step-up operators. Further, we find that the acceptable eigenfunctions should have the asymptotic behavior vertical bar x vertical bar(-n1-n2 mu) as vertical bar x vertical bar -> infinity, with n(1) and n(2) being positive integers, though this condition alone is not enough to identify them uniquely. We also assert that the rates of relaxation of LOUP are determined by the eigenvalues of the associated fractional Fokker-Planck operator and do not depend on the initial state if the moments of the initial distribution are all finite. If the initial distribution has fat tails, for which the higher moments diverge, one can have nonspectral relaxation, as pointed out by Toenjes et al. Phys. Rev. Lett. 110, 150602 (2013)].
Resumo:
This paper presents numerical simulation of the evolution of one-dimensional normal shocks, their propagation, reflection and interaction in air using a single diaphragm Riemann shock tube and validate them using experimental results. Mathematical model is derived for one-dimensional compressible flow of viscous and conducting medium. Dimensionless form of the mathematical model is used to construct space-time finite element processes based on minimization of the space-time residual functional. The space-time local approximation functions for space-time p-version hierarchical finite elements are considered in higher order GRAPHICS] spaces that permit desired order of global differentiability of local approximations in space and time. The resulting algebraic systems from this approach yield unconditionally positive-definite coefficient matrices, hence ensure unique numerical solution. The evolution is computed for a space-time strip corresponding to a time increment Delta t and then time march to obtain the evolution up to any desired value of time. Numerical studies are designed using recently invented hand-driven shock tube (Reddy tube) parameters, high/low side density and pressure values, high- and low-pressure side shock tube lengths, so that numerically computed results can be compared with actual experimental measurements.
Resumo:
We affirmatively answer a question due to S. Bocherer concerning the feasibility of removing one differential operator from the standard collection of m + 1 of them used to embed the space of Jacobi forms of weight 2 and index m into several pieces of elliptic modular forms. (C) 2014 Elsevier Inc. All rights reserved.
Resumo:
The tetrablock, roughly speaking, is the set of all linear fractional maps that map the open unit disc to itself. A formal definition of this inhomogeneous domain is given below. This paper considers triples of commuting bounded operators (A,B,P) that have the tetrablock as a spectral set. Such a triple is named a tetrablock contraction. The motivation comes from the success of model theory in another inhomogeneous domain, namely, the symmetrized bidisc F. A pair of commuting bounded operators (S,P) with Gamma as a spectral set is called a Gamma-contraction, and always has a dilation. The two domains are related intricately as the Lemma 3.2 below shows. Given a triple (A, B, P) as above, we associate with it a pair (F-1, F-2), called its fundamental operators. We show that (A,B,P) dilates if the fundamental operators F-1 and F-2 satisfy certain commutativity conditions. Moreover, the dilation space is no bigger than the minimal isometric dilation space of the contraction P. Whether these commutativity conditions are necessary, too, is not known. what we have shown is that if there is a tetrablock isometric dilation on the minimal isometric dilation space of P. then those commutativity conditions necessarily get imposed on the fundamental operators. En route, we decipher the structure of a tetrablock unitary (this is the candidate as the dilation triple) and a tertrablock isometry (the restriction of a tetrablock unitary to a joint invariant sub-space). We derive new results about r-contractions and apply them to tetrablock contractions. The methods applied are motivated by 11]. Although the calculations are lengthy and more complicated, they beautifully reveal that the dilation depends on the mutual relationship of the two fundamental operators, so that certain conditions need to be satisfied. The question of whether all tetrablock contractions dilate or not is unresolved.
Resumo:
Let F and G be two bounded operators on two Hilbert spaces. Let their numerical radii be no greater than one. This note investigates when there is a Gamma-contraction (S, P) such that F is the fundamental operator of (S, P) and G is the fundamental operator of (S*, P*). Theorem 1 puts a necessary condition on F and G for them to be the fundamental operators of (S, P) and (S*, P*) respectively. Theorem 2 shows that this necessary condition is also sufficient provided we restrict our attention to a certain special case. The general case is investigated in Theorem 3. Some of the results obtained for Gamma-contractions are then applied to tetrablock contractions to figure out when two pairs (F1, F2) and (G(1), G(2)) acting on two Hilbert spaces can be fundamental operators of a tetrablock contraction (A, B, P) and its adjoint (A*, B*, P*) respectively. This is the content of Theorem 3. (C) 2015 Elsevier Inc. All rights reserved.
Resumo:
In the vector space of algebraic curvature operators we study the reaction ODE which is associated to the evolution equation of the Riemann curvature operator along the Ricci flow. More precisely, we give a partial classification of the zeros of this ODE up to suitable normalization and analyze the stability of a special class of zeros of the same. In particular, we show that the ODE is unstable near the curvature operators of the Riemannian product spaces where is an Einstein (locally) symmetric space of compact type and not a spherical space form when .