64 resultados para Resin sealer


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Experiments were conducted to measure the ac breakdown strength of 0.5 mm, thick epoxy alumina nanocomposites with different filler concentrations of 0.1, 1 and 5wt%. The experiments were performed as per the ASTM D 149 standard. It was observed that the ac breakdown strength was marginally lower up to 1wt% filler concentration and then increased at 5wt% filler concentration as compared to the unfilled epoxy. The Weibull shape parameter (β) increased with the addition of nanoparticles to epoxy. The dependence of thickness on the ac breakdown strength was also analyzed by conducting experiments on 1mm and 3mm thick unfilled epoxy and epoxy alumina nanocomposites of 1wt% and 5wt% filler concentrations. The DSC analysis was done to understand the material properties at the filler resin interface in order to study the effect of the filler concentration and thereby the influence of the interface on the ac breakdown strength of epoxy nanocomposites.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thickness tapered laminates obtained by terminating a certain number of plies contain resin-rich areas called ‘resin pockets’ near ply drops, where high stress concentrations exist. Study of the effects of ply drops and resin pockets on the tensile behaviour of tapered laminates considering certain important parameters like taper angle, the number of plies dropped, and the fiber orientation is reported here. Estimation of the tensile strength of tapered laminates necessitates accurate determination of the state of stress near the ply-drop region, which is, in general, three-dimensional (3-D) in nature. Recognising the fact that full 3-D finite-element analysis becomes computationally exorbitant, special layered 3-D finite-element analysis is carried out. Laminates with ply drops along only one direction are analysed to elicit the nature of the local bending effects occurring near the ply drops. Complete 3-D Tsai–Wu criterion considering all the six stress components is used to obtain a quick and comparative assessment of the tensile strength of these laminates. High stress concentration zones are identified and the effects of number of plies dropped at a station and resin pocket geometry are illustrated. The mechanism of load transfer near ply drops and the local bending that occurs are described. Susceptibility of ply drop zones to the onset and subsequent growth of delaminations is also brought out.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Syntactic foam made by mechanical mixing of glass hollow spheres in epoxy resin matrix is characterized for compressive properties in the present study. Volume fraction of hollow spheres in the syntactic foam under investigation is kept at 67.8%. Effect of specimen aspect ratio on failure behavior and stress-strain curve of the material is highlighted. Considerable differences are noted in the macroscopic fracture features of the specimen and the stress-strain curve with the variation in specimen aspect ratio, although compressive yield strength values were within a narrow range. Post compression test scanning electron microscopic observations coupled with the macroscopic observations taken during the test helped in explaining the deviation in specimen behavior and in gathering support for the proposed arguments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Experiments were conducted to measure the ac breakdown strength of epoxy alumina nanocomposites with different filler loadings of 0.1, 1 and 5 wt%. The experiments were performed as per the ASTM D 149 standard on samples of thickness 0.5 mm, 1 mm and 3 mm in order to study the effect of thickness on the ac breakdown strength of epoxy nanocomposites. In the case of epoxy alumina nanocomposites it was observed that the ac breakdown strength was marginally lower for 0.1 wt% and 1 wt% filler loadings and then increased at 5 wt% filler loading as compared to the unfilled epoxy. The Weibull shape parameter (beta) increased with the addition of nanoparticles to epoxy as well as with the increasing sample thickness for all the filler loadings considered. DSC analysis was done to study the material properties at the filler resin interface in order to understand the effect of the filler loading and thereby the influence of the interface on the ac breakdown strength of epoxy nanocomposites. It was also observed that the decrease in ac electric breakdown strength with an increase in sample thickness follows an inverse power-law dependence. In addition, the ac breakdown strength of epoxy silica nanocomposites have also been studied in order to understand the influence of the filler type on the breakdown strength.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Diffuse optical tomography (DOT) using near-infrared (NIR) light is a promising tool for noninvasive imaging of deep tissue. This technique is capable of quantitative reconstructions of absorption coefficient inhomogeneities of tissue. The motivation for reconstructing the optical property variation is that it, and, in particular, the absorption coefficient variation, can be used to diagnose different metabolic and disease states of tissue. In DOT, like any other medical imaging modality, the aim is to produce a reconstruction with good spatial resolution and accuracy from noisy measurements. We study the performance of a phase array system for detection of optical inhomogeneities in tissue. The light transport through a tissue is diffusive in nature and can be modeled using diffusion equation if the optical parameters of the inhomogeneity are close to the optical properties of the background. The amplitude cancellation method that uses dual out-of-phase sources (phase array) can detect and locate small objects in turbid medium. The inverse problem is solved using model based iterative image reconstruction. Diffusion equation is solved using finite element method for providing the forward model for photon transport. The solution of the forward problem is used for computing the Jacobian and the simultaneous equation is solved using conjugate gradient search. The simulation studies have been carried out and the results show that a phase array system can resolve inhomogeneities with sizes of 5 mm when the absorption coefficient of the inhomogeneity is twice that of the background tissue. To validate this result, a prototype model for performing a dual-source system has been developed. Experiments are carried out by inserting an inhomogeneity of high optical absorption coefficient in an otherwise homogeneous phantom while keeping the scattering coefficient same. The high frequency (100 MHz) modulated dual out-of-phase laser source light is propagated through the phantom. The interference of these sources creates an amplitude null and a phase shift of 180° along a plane between the two sources with a homogeneous object. A solid resin phantom with inhomogeneities simulating the tumor is used in our experiment. The amplitude and phase changes are found to be disturbed by the presence of the inhomogeneity in the object. The experimental data (amplitude and the phase measured at the detector) are used for reconstruction. The results show that the method is able to detect multiple inhomogeneities with sizes of 4 mm. The localization error for a 5 mm inhomogeneity is found to be approximately 1 mm.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A methodology using sensitivity analysis is proposed to measure the effective permeability which includes the interaction of the resin and the reinforcement. Initially, mold-filling experiments were performed at isothermal conditions on the test specimen and the positions of the flow front were tracked with time using a flow visualization method. Following this, mold-filling experiments were simulated using a commercial software to obtain the positions of the flow front with time at the process conditions used for experiments. Several iterations were performed using different trial values of the permeability until the experimentally tracked and simulated positions of the flow front with time were matched. Finally, the value of the permeability thus obtained was validated by comparing the positions obtained by performing the experiments at different process conditions with the positions obtained by simulating the experiments. In this study, woven roving and chopped strand mats of E-class glass fiber and unsaturated polyester resin were used for the experiments. From the results, it was found that the measured permeabilities were consistent with varying process conditions. POLYM. COMPOS., 2012. (c) 2012 Society of Plastics Engineers

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Several research groups have attempted to optimize photopolymerization parameters to increase the throughput of scanning based microstereolithography (MSL) systems through modified beam scanning techniques. Efforts in reducing the curing line width have been implemented through high numerical aperture (NA) optical setups. However, the intensity contour symmetry and the depth of field of focus have led to grossly non-vertical and non-uniform curing profiles. This work tries to review the photopolymerization process in a scanning based MSL system from the aspect of material functionality and optical design. The focus has been to exploit the rich potential of photoreactor scanning system in achieving desired fabrication modalities (minimum curing width, uniform depth profile, and vertical curing profile) even with a reduced NA optical setup and a single movable stage. The present study tries to manipulate to its advantage the effect of optimized lower c] (photoinitiator (PI) concentration) in reducing the minimum curing width to similar to 10-20 mu m even with a higher spot size (similar to 21.36 mu m) through a judiciously chosen ``monomer-PI'' system. Optimization on grounds of increasing E-max (maximum laser exposure energy at surface) by optimizing the scan rate provides enough time for the monomer or resin to get cured across the entire resist thickness (surface to substrate similar to 10-100 mu m), leading to uniform depth profiles along the entire scan lengths. (C) 2012 American Institute of Physics. http://dx.doi.org/10.1063/1.4750975]

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Epoxy resin bonded mica splitting is the insulation of choice for machine stators. However, this system is seen to be relatively weak under time varying mechanical stress, in particular the vibration causing delamination of mica and deboning of mica from the resin matrix. The situation is accentuated under the combined action of electrical, thermal and mechanical stress. Physical and probabilistic models for failure of such systems have been proposed by one of the authors of this paper earlier. This paper presents a pragmatic accelerated failure data acquisition and analytical paradigm under multi factor coupled stress, Electrical, Thermal. The parameters of the phenomenological model so developed are estimated based on sound statistical treatment of failure data.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The assembly of aerospace and automotive structures in recent years is increasingly carried out using adhesives. Adhesive joints have advantages of uniform stress distribution and less stress concentration in the bonded region. Nevertheless, they may suffer due to the presence of defects in bond line and at the interface or due to improper curing process. While defects like voids, cracks and delaminations present in the adhesive bond line may be detected using different NDE methods, interfacial defects in the form of kissing bond may go undetected. Attempts using advanced ultrasonic methods like nonlinear ultrasound and guided wave inspection to detect kissing bond have met with limited success stressing the need for alternate methods. This paper concerns the preliminary studies carried out on detectability of dry contact kissing bonds in adhesive joints using the Digital Image Correlation (DIC) technique. In this attempt, adhesive joint samples containing varied area of kissing bond were prepared using the glass fiber reinforced composite (GFRP) as substrates and epoxy resin as the adhesive layer joining them. The samples were also subjected to conventional and high power ultrasonic inspection. Further, these samples were loaded till failure to determine the bond strength during which digital images were recorded and analyzed using the DIC method. This noncontact method could indicate the existence of kissing bonds at less than 50% failure load. Finite element studies carried out showed a similar trend. Results obtained from these preliminary studies are encouraging and further tests need to be done on a larger set of samples to study experimental uncertainties and scatter associated with the method. (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A short and efficient chemical synthesis of biologically potent and novel 1-deoxythiosugars is accomplished. Introduction of sulfur mediated by benzyltriethylammonium tetrathiomolybdate, as a sulfur transfer reagent through nucleophilic double displacement of tosylate in alpha,omega-di-O-tosyl aldonolactones in an intramolecular fashion is the key feature. The subsequent reduction of thiosugar lactones with borohydride exchange resin (BER) offers a number of deoxythiosugars in good overall yield. (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Plain epoxy resins or resin impregnated cellulose have found application as electrical insulation in power equipment. In the past, their performance was improved by the use of inorganic oxide fillers of microscopic dimensions. In the recent past nano-particle doped epoxy insulation came into use with a view to further enhance the dielectric properties. This paper reports dielectric investigations into epoxy nano-composites based on a class of metal oxides, Al2O3 and SiO2. In particular, consideration has been given to the partial discharge performance and electrical breakdown under different voltage profiles as a function of the volumetric composition of the nano-particles in epoxy resin.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lactate dehydrogenase (LDH) of the malaria parasite, Plasmodium vivax (Pv), serves as a drug target and immunodiagnostic marker. The LDH cDNA generated from total RNA of a clinical isolate of the parasite was cloned into pRSETA plasmid. Recombinant his-tagged PvLDH was over-expressed in E. coli Rosetta2DE3pLysS and purified using Ni2+-NTA resin giving a yield of 25-30 mg/litre bacterial culture. The recombinant protein was enzymatically active and its catalytic efficiency for pyruvate was 5.4 x 10(8) min(-1) M-1, 14.5 fold higher than a low yield preparation reported earlier to obtain PvLDH crystal structure. The enzyme activity was inhibited by gossypol and sodium oxamate. The recombinant PvLDH was reactive in lateral flow immunochromatographic assays detecting pan- and vivax-specific LDH. The soluble recombinant PvLDH purified using heterologous expression system can facilitate the generation of vivax LDH-specific monoclonals and the screening of chemical compound libraries for PvLDH inhibitors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tufted and plain unidirectional carbon fabric-reinforced epoxy composite laminates were fabricated by vacuum-enhanced resin infusion technology and subjected to in-plane tensile tests with a view to study the changes in mechanical properties and failure responses. Owing to the presence of tufts in the laminates, both the tensile strength and modulus decrease by similar to 38 and similar to 20%, respectively, vis-A -vis the values recorded for plain composites. The fracture features point to the fact that though both the composites fail in brittle manner, they, however, exhibit differing fiber pull out lengths. Further, it was noticed that for the tufted ones, crack originates in the vicinity of tuft thread, spreads through the composite in a brittle manner, and results in a display of shorter fiber pull out lengths. These observations and other results are discussed in this paper.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new one-pot version of the titled reaction involves heating a mixture of a carbonyl compound, a phenylhydrazine, and the cation exchange resin Amberlite IR 120 in refluxing ethanol. A variety of enolizable aldehydes, and ketones and several substituted phenylhydrazines could thus be converted to the corresponding indoles in excellent yields (70-88%). Reaction times were typically 6-10 h, with the resin being then filtered off and the product isolated after minimal workup.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper reports on the effect of multiwall carbon nanotubes (CNTs) without and with chemical functionalization on the mechanical properties of Bisphenol E cyanate ester resin (BECy) based carbon fibre reinforced plastic (CFRP) laminated composites. BECy with its low viscosity, low moisture uptake and superior mechanical properties is selected for its application in CFRP laminates through the cost-effective Vacuum Assisted Resin Transfer Moulding (VARTM) process. However, unlike CNT-epoxy-CFRP composites, processing and performance issues such as dispersion of CNTs, chemical bonding with resin, functionalization effects, effects on mechanical properties, etc. for BECy-CNT-CFRP composite system are not well reported. The objective of this study is to improve the mechanical properties of BECy resin with small additions of CNTs and functionalized CNTs in CFRP laminates. CNTs and fCNTs are infused into BECy using ultrasonication and standard mixing methods. Improvements in Young's modulus and strength in tension, compression, shear, flexure and interlaminar shear strength are analysed. It is observed that addition of 0.5wt% CNTs effected for maximum mechanical properties of the resin and 1wt% CNTs for the mechanical properties of CNT-CFRP nanocomposite. Further, improvements obtained with fCNTs are marginal. Dispersion behaviour and effect of CNTs/fCNTs in load transfer corroborated with SEM pictures are presented. The enhanced mechanical properties realized in VARTM processing of BECy-CFRP laminate indicate clear advantage of CNT based modification of the process.