71 resultados para Relational algebra
Resumo:
In the combinatorial method or Grassmann algebra formalism the ground state properties of the f J Ising model can be expressed in terms of the behaviour of the eigenvectors of a matrix. It is shown that a transition from localized to extended eigenvectors signals the breakdown of ferromagnetic rigidity.
Resumo:
We establish the Poincaré invariance of anomalous gauge theories in two dimensions, for both the Abelian and non-Abelian cases, in the canonical Hamiltonian formalism. It is shown that, despite the noncovariant appearance of the constraints of these theories, Poincaré generators can be constructed which obey the correct algebra and yield the correct transformations in the constrained space.
Resumo:
We obtain the superconformal transformation laws of theN=4 supersymmetric Yang-Mills theory and explicitly demonstrate the closure of the algebra.
Resumo:
This paper introduces CSP-like communication mechanisms into Backus’ Functional Programming (FP) systems extended by nondeterministic constructs. Several new functionals are used to describe nondeterminism and communication in programs. The functionals union and restriction are introduced into FP systems to develop a simple algebra of programs with nondeterminism. The behaviour of other functionals proposed in this paper are characterized by the properties of union and restriction. The axiomatic semantics of communication constructs are presented. Examples show that it is possible to reason about a communicating program by first transforming it into a non-communicating program by using the axioms of communication, and then reasoning about the resulting non-communicating version of the program. It is also shown that communicating programs can be developed from non-communicating programs given as specifications by using a transformational approach.
Resumo:
In this paper we study representation of KL-divergence minimization, in the cases where integer sufficient statistics exists, using tools from polynomial algebra. We show that the estimation of parametric statistical models in this case can be transformed to solving a system of polynomial equations. In particular, we also study the case of Kullback-Csiszar iteration scheme. We present implicit descriptions of these models and show that implicitization preserves specialization of prior distribution. This result leads us to a Grobner bases method to compute an implicit representation of minimum KL-divergence models.
Resumo:
We show how, for large classes of systems with purely second-class constraints, further information can be obtained about the constraint algebra. In particular, a subset consisting of half the full set of constraints is shown to have vanishing mutual brackets. Some other constraint brackets are also shown to be zero. The class of systems for which our results hold includes examples from non-relativistic particle mechanics as well as relativistic field theory. The results are derived at the classical level for Poisson brackets, but in the absence of commutator anomalies the same results will hold for the commutators of the constraint operators in the corresponding quantised theories.
Resumo:
Diffuse optical tomographic image reconstruction uses advanced numerical models that are computationally costly to be implemented in the real time. The graphics processing units (GPUs) offer desktop massive parallelization that can accelerate these computations. An open-source GPU-accelerated linear algebra library package is used to compute the most intensive matrix-matrix calculations and matrix decompositions that are used in solving the system of linear equations. These open-source functions were integrated into the existing frequency-domain diffuse optical image reconstruction algorithms to evaluate the acceleration capability of the GPUs (NVIDIA Tesla C 1060) with increasing reconstruction problem sizes. These studies indicate that single precision computations are sufficient for diffuse optical tomographic image reconstruction. The acceleration per iteration can be up to 40, using GPUs compared to traditional CPUs in case of three-dimensional reconstruction, where the reconstruction problem is more underdetermined, making the GPUs more attractive in the clinical settings. The current limitation of these GPUs in the available onboard memory (4 GB) that restricts the reconstruction of a large set of optical parameters, more than 13, 377. (C) 2010 Society of Photo-Optical Instrumentation Engineers. DOI: 10.1117/1.3506216]
Resumo:
We study t-analogs of string functions for integrable highest weight representations of the affine Kac-Moody algebra A(1)((1)). We obtain closed form formulas for certain t-string functions of levels 2 and 4. As corollaries, we obtain explicit identities for the corresponding affine Hall-Littlewood functions, as well as higher level generalizations of Cherednik's Macdonald and Macdonald-Mehta constant term identities.
Resumo:
The minimum distance of linear block codes is one of the important parameter that indicates the error performance of the code. When the code rate is less than 1/2, efficient algorithms are available for finding minimum distance using the concept of information sets. When the code rate is greater than 1/2, only one information set is available and efficiency suffers. In this paper, we investigate and propose a novel algorithm to find the minimum distance of linear block codes with the code rate greater than 1/2. We propose to reverse the roles of information set and parity set to get virtually another information set to improve the efficiency. This method is 67.7 times faster than the minimum distance algorithm implemented in MAGMA Computational Algebra System for a (80, 45) linear block code.
Resumo:
For an n(t) transmit, n(r) receive antenna system (n(t) x nr system), a full-rate space time block code (STBC) transmits min(n(t), n(r)) complex symbols per channel use. In this paper, a scheme to obtain a full-rate STBC for 4 transmit antennas and any n(r), with reduced ML-decoding complexity is presented. The weight matrices of the proposed STBC are obtained from the unitary matrix representations of a Clifford Algebra. By puncturing the symbols of the STBC, full rate designs can be obtained for n(r) < 4. For any value of n(r), the proposed design offers the least ML-decoding complexity among known codes. The proposed design is comparable in error performance to the well known Perfect code for 4 transmit antennas while offering lower ML-decoding complexity. Further, when n(r) < 4, the proposed design has higher ergodic capacity than the punctured Perfect code. Simulation results which corroborate these claims are presented.
Resumo:
Random Access Scan, which addresses individual flip-flops in a design using a memory array like row and column decoder architecture, has recently attracted widespread attention, due to its potential for lower test application time, test data volume and test power dissipation when compared to traditional Serial Scan. This is because typically only a very limited number of random ``care'' bits in a test response need be modified to create the next test vector. Unlike traditional scan, most flip-flops need not be updated. Test application efficiency can be further improved by organizing the access by word instead of by bit. In this paper we present a new decoder structure that takes advantage of basis vectors and linear algebra to further significantly optimize test application in RAS by performing the write operations on multiple bits consecutively. Simulations performed on benchmark circuits show an average of 2-3 times speed up in test write time compared to conventional RAS.
Resumo:
Gauss and Fourier have together provided us with the essential techniques for symbolic computation with linear arithmetic constraints over the reals and the rationals. These variable elimination techniques for linear constraints have particular significance in the context of constraint logic programming languages that have been developed in recent years. Variable elimination in linear equations (Guassian Elimination) is a fundamental technique in computational linear algebra and is therefore quite familiar to most of us. Elimination in linear inequalities (Fourier Elimination), on the other hand, is intimately related to polyhedral theory and aspects of linear programming that are not quite as familiar. In addition, the high complexity of elimination in inequalities has forces the consideration of intricate specializations of Fourier's original method. The intent of this survey article is to acquaint the reader with these connections and developments. The latter part of the article dwells on the thesis that variable elimination in linear constraints over the reals extends quite naturally to constraints in certain discrete domains.
Resumo:
In this article we consider a semigroup ring R = KGamma] of a numerical semigroup Gamma and study the Cohen- Macaulayness of the associated graded ring G(Gamma) := gr(m), (R) := circle plus(n is an element of N) m(n)/m(n+1) and the behaviour of the Hilbert function H-R of R. We define a certain (finite) subset B(Gamma) subset of F and prove that G(Gamma) is Cohen-Macaulay if and only if B(Gamma) = empty set. Therefore the subset B(Gamma) is called the Cohen-Macaulay defect of G(Gamma). Further, we prove that if the degree sequence of elements of the standard basis of is non-decreasing, then B(F) = empty set and hence G(Gamma) is Cohen-Macaulay. We consider a class of numerical semigroups Gamma = Sigma(3)(i=0) Nm(i) generated by 4 elements m(0), m(1), m(2), m(3) such that m(1) + m(2) = mo m3-so called ``balanced semigroups''. We study the structure of the Cohen-Macaulay defect B(Gamma) of Gamma and particularly we give an estimate on the cardinality |B(Gamma, r)| for every r is an element of N. We use these estimates to prove that the Hilbert function of R is non-decreasing. Further, we prove that every balanced ``unitary'' semigroup Gamma is ``2-good'' and is not ``1-good'', in particular, in this case, c(r) is not Cohen-Macaulay. We consider a certain special subclass of balanced semigroups Gamma. For this subclass we try to determine the Cohen-Macaulay defect B(Gamma) using the explicit description of the standard basis of Gamma; in particular, we prove that these balanced semigroups are 2-good and determine when exactly G(Gamma) is Cohen-Macaulay. (C) 2011 Published by Elsevier B.V.
Resumo:
A symmetric cascade of selective pulses applied on connected transitions leads to the excitation of a selected multiple-quantum coherence by a well-defined angle. This cascade selectively operates on the subspace of the multiple-quantum coherence and acts as a generator of rotation selectively on the multiple-quantum subspace. Single-transition operator algebra has been used to explain these experiments. Experiments have been performed on two- and three-spin systems. It is shown that such experiments can be utilized to measure the relaxation times of selected multiple-quantum coherences or of a specifically prepared initial longitudinal state of the spin system.
Resumo:
An analytical expression for the LL(T) decomposition for the Gaussian Toeplitz matrix with elements T(ij) = [1/(2-pi)1/2-sigma] exp[-(i - j)2/2-sigma-2] is derived. An exact expression for the determinant and bounds on the eigenvalues follows. An analytical expression for the inverse T-1 is also derived.