215 resultados para Radial diffuser
Resumo:
An EXAFS study at the AsK edge of the ternary glasses As2(S, Se)3 and As2(Se, Te)3 and the binary As2S3, As2Se3 and As2Te3 glasses has been carried out. Radial structure functions show that the environment of As in glasses of intermediate compositions is quite different from that in the binary glasses. In the As2(S, Se)3 system, this might arise from chemical disorder in the network while in the As2(Se, Te)3 system increased ionicity could be the cause of this behaviour. Glasses where the constituent atoms are of similar size seem to exhibit fewer peaks in the radial structure function.
Resumo:
An elasticity solution has been obtained for a long circular sandwich cylindrical shell subjected to axisymmetric radial ring load using Love's stress function approach. Numerical results are presented for different ratios of modulus of elasticity of the layers. The results obtained from this analysis have been compared with those obtained from sandwich shell theory due to Fulton.
Resumo:
Isothermal-isobaric ensemble Monte Carlo simulation studies of adamantane have been carried out at different temperatures. Thermodynamic properties and radial distribution functions calculated by employing a simple potential model based on sitesite interactions show good agreement with experiment and suggest that the solid is orientationally disordered at high temperatures.
Resumo:
A long two-layered circular cylinder having a thin orthotropic outer shell and a thick transversely isotropic core subjected to an axisymmetric radialv line load has been analysed. For analysis of the outer shell the classical thin shell theory was adopted and for analysis of the inner core the elasticity theory was used. The continuity of stresses and deformations at the interface has been satisfied by assumming perfect adhesion between the layers. Numerical results have been presented for two different ratios of outer shell thickness to inner radius and for three different ratios of modulus of elasticity in the radial direction of outer shell to inner core. The results have been compared with the elasticity solution of the same problem to bring out the reliability of this hybrid method. References
Resumo:
The hydrodynamical problem of flow in proximal renal tubule is investigated by considering axisymmetric flow of a viscous, incompressible fluid through a long narrow tube of varying cross-section with reabsorption at the wall. Two cases for reabsorption have been studied (i) when the bulk flow,Q, decays exponentially with the axial distancex, and (ii) whenQ is an arbitrary function ofx such thatQ-Q 0 can be expressed as a Fourier integral (whereQ 0 is the flux atx=0). The analytic expressions for flow variables have been obtained by applying perturbation method in terms of wall parameter ε. The effects of ε on pressure drop across the tube, radial velocity and wall shear have been studied in the case of exponentially decaying bulk flow and it has been found that the results are in agreement with the existing ones for the renal tubules.
Resumo:
THE PROCESS of mass transfer from saturated porous surfaces virtual origin ; exposed to turbulent air streams finds many practical applitransverse coordinate; cations. In many cases, the air stream will be in the form of a height of nozzle above flat plate--radial wall jet; wall jet over the porous surface. The aerodynamics of both plane and radial wall jets have been investigated in detail and a vast amount of literature is available on the subject [l-3].
Resumo:
Pion photoproduction processes14Ngs(gamma, pgr +)14C and14Ngs(gamma, pgr –)14O have been studied in the threshold region. These processes provide an excellent tool to study the corrections to soft pion theorems and Kroll-Ruderman limit as applied to nuclear processes. The agreement with the available experimental data for these processes is better with the empirical wave functions while the shell-model wave functions predict a much higher value. Detailed experimental studies of these reactions at threshold, it is shown, are expected to lead to a better understanding of the shell-model inputs and radial distributions in the 1p state. We thank Dr. S.C.K. Nair for a helpful discussion during the initial stages of this work. One of us (MVN) thanks Dr. J.M. Laget for sending some unpublished data on pion photoproduction. He is also thankful to Dr. J. Pasupathy and Dr. R. Rajaraman for their interest and encouragement.
Resumo:
The classical Rayleigh-Ritz method in conjunction with suitable co-ordinate transformations is found to be effective for accurate estimation of natural frequencies of circumferentially truncated circular sector plates with simply supported straight edges. Numerical results are obtained for all the nine combinations of clamped, simply supported and free boundary conditions at the circular edges and presented in the form of graphs. The analysis confirms an earlier observation that the plate behaves like a long rectangular strip as the width of the plate in the radial direction becomes small.
Resumo:
The title-problem has been reduced to that of solving a Fredholm integral equation of the second kind. One end of the cylinder is assumed to be fixed, while the cylinder is deformed by an axial current. The vertical displacement on the upper flat end of the cylinder has been determined from an iterative solution of the Fredholm equation valid for large values of the length. The radial displacement of the curved boundary has also been determined at the middle of the cylinder, by using the iterative solution.
Resumo:
This paper reports measurements of turbulent quantities in an axisymmetric wall jet subjected to an adverse pressure gradient in a conical diffuser, in such a way that a suitably defined pressure-gradient parameter is everywhere small. Self-similarity is observed in the mean velocity profile, as well as the profiles of many turbulent quantities at sufficiently large distances from the injection slot. Autocorrelation measurements indicate that, in the region of turbulent production, the time scale of ν fluctuations is very much smaller than the time scale of u fluctuations. Based on the data on these time scales, a possible model is proposed for the Reynolds stress. One-dimensional energy spectra are obtained for the u, v and w components at several points in the wall jet. It is found that self-similarity is exhibited by the one-dimensional wavenumber spectrum of $\overline{q^2}(=\overline{u^2}+\overline{v^2}+\overline{w^2})$, if the half-width of the wall jet and the local mean velocity are used for forming the non-dimensional wavenumber. Both the autocorrelation curves and the spectra indicate the existence of periodicity in the flow. The rate of dissipation of turbulent energy is estimated from the $\overline{q^2}$ spectra, using a slightly modified version of a previously suggested method.
Resumo:
A method based on an assumption that the radial bending moment is zero at a nodal circle is shown to yield accurate estimates of natural frequencies corresponding to higher modes of transversely vibrating polar orthotropic annular plates for various combinations of clamped, simply supported and free edge conditions. This method is found to be convenient for the determination of locations of nodal circles as well. Numerical investigations revealed that for small holes, nodal circles tend to move towards the outer edge with increasing number of nodal diameters. For large holes, it has been shown that the plate behaves like a long rectangular strip.
Resumo:
The classical Rayleigh-Ritz method in conjunction with suitable co-ordinate transformations is found to be effective for accurate estimation of natural frequencies of circumferentially truncated circular sector plates with simply supported straight edges. Numerical results are obtained for all the nine combinations of clamped, simply supported and free boundary conditions at the circular edges and presented in the form of graphs. The analysis confirms an earlier observation that the plate behaves like a long rectangular strip as the width of the plate in the radial direction becomes small.
Resumo:
The paper deals with the classical problem of axi-symmetric transmission of low amplitude waves through a circular pipe containing a viscous liquid. Exact governing equations are identified and solved, the radial as well as the axial component of the velocity being considered. Attention is drawn to certain fallacies underlying the conventional approach. The parameters required in the formulation of the transfer matrix for a pipe have been evaluated. In order to evaluate the response at the terminal point of a branched system for a sinusoidal input at one of the ends, a general algorithm has been developed.
Resumo:
In the case of reinforced concrete slabs fixed at the boundaries, considerable enhancement in the load carrying capacity takes place due to compressive membrane action. In this paper a method is presented to analyse the effects of membrane action in fixed orthotropic circular slabs, carrying uniformly distributed loads. Depending on the radial moment capacity being greater or less than the circumferential moment capacity, two cases of orthotropy have been considered. Numerical results are worked out for certain assumed physical parameters and for different coefficients of orthotropy. Variations of load and bending moments with the central deflection are presented.
Resumo:
A method based on an assumption that the radial bending moment is zero at a nodal circle is shown to yield accurate estimates of natural frequencies corresponding to higher modes of transversely vibrating polar orthotropic annular plates for various combinations of clamped, simply supported and free edge conditions. This method is found to be convenient for the determination of locations of nodal circles as well. Numerical investigations revealed that for small holes, nodal circles tend to move towards the outer edge with increasing number of nodal diameters. For large holes, it has been shown that the plate behaves like a long rectangular strip.