85 resultados para RB Patología
Resumo:
Introduction The alum family of double salts with the general formula M1+M3+(RO4)2.12H2O where M1+ is a monovalent ion (M1+ = K, Rb, Cs, Tl, NH4, CH3NH3, NH3OH3 NH3NH2, etc.) and M3+ is a trivalent metal such as Al, Fe, Cr, V, In, Ga, etc. and R is S or Se, form an isomorphous series and their general features indicate a common cubic space group Pa3. Lipson1 showed subsequently that there exist three different structure types agr, β and γ and the structure of a particular alum is dependent on the radius of the monovalent atom. The agr structure is typical of medium sized ions, the β of the larger ones and the γ of the small Na atom.2 Ferroelectricity has been reported only in alums containing NH4, CH3NH3, NH3NH3 and NH3OH. Their hindered rotations as well as the influence of sulphate group disorder on the dielectric behaviour of alums is still not clear.3 No study of the temperature dependence of the low frequency dielectric constant of some of the alums, particularly those of Cs, Rb and Tl, have been made so The present investigation was undertaken to correlate their dielectric behaviour with their composition and structural differences. Under the same experimental conditions, methyl ammonium and ammonium alums also were studied and compared with the known data.
Resumo:
A new class of layered alkali metal-MoO3 bronzes,AxMoO3 (A =Li, Na, K, Rb), with nearly the same unit cell parameters as the host oxide has been synthesized by the solid-state reaction of MoO3 with alkali metal iodides around 575 K; LixMoO3 absorbs H2O causing an increase in theb parameter of the unit cell. Hexagonal potassium bronzes of W1−xMoxO3 are synthesized for the first time.
Resumo:
Molecular dynamics simulation studies on polyene antifungal antibiotic amphotericin B, its head-to-tail dimeric structure and lipid - amphotericin B complex demonstrate interesting features of the flexibilities within the molecule and define the optimal interactions for the formation of a stable dimeric structure and complex with phospholipid.
Resumo:
Single crystals (up to 1 cm size) of K, Rb and Cs periodates have been grown in silica gel. In general, good quality crystals were obtained in gel of specific gravity 1.04 and pH 4. The metal/iodine ratios were determined and compared with calculated values. Morphological studies were carried out using a bicircle optical goniometer. Other characterization methods include X-ray diffraction, optical absorption, differential scanning calorimetry and optical microscopy. Microscopic examination of CsIO4 crystals in particular has revealed the existence of ferroelastic domains in the crystal. The structural basis for the occurence of ferroelasticity in this crystal is discussed and the high temperature space group is predicted.
Resumo:
Optical absorption and photoluminescence studies have been carried out at room temperature in 25 R2O-25 GeO2-49.5 B2O3-0.5 Nd2O3 glass systems, (Composition in mol%, R= Li, Na, K and Rb). Judd Ofelt Intensity parameters and other parameters like Racah (E-1, E-2 and E-3), Slater-Condon-Shortley (F-2, F-4 and F-6) Spin-Orbit Coupling (xi(4f)) and Configuration Interaction (alpha,beta and gamma) for Nd3+ ion in the glass system are calculated. The variation of the 02 parameters are interpreted in terms of the covalency of the RE ion in the glass matrix. Further the hypersensitive transition I-4(9/2) -> (4)G(5/2), (2)G(7/2) is analyzed with respect to the intensity ratio I-L/I-S and is found to be dependent on the type of alkali in the glass matrix. The Photoluminescence studies do not show any appreciable shift in the peak emission wavelength of the F-4(3/2) to I-4(11/2) transition with the change in alkali type. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Three series of novel glitazones were designed and prepared by using appropriate synthetic schemes to incorporate glycine, aromatic and alicyclic amines via two carbon linker. Compounds were synthesized both under conventional and microwave methods. Nineteen out of twenty four synthesized compounds were evaluated for their in vitro glucose uptake activity using isolated rat hemi-diaphragm. Compounds, 6, 9a, 13a, 13b, 13c, 13f and 13h exhibited significant glucose uptake activity. Illustration about their synthesis and in vitro glucose uptake activity is described along with the structure activity relationships. (C) 2010 Elsevier Masson SAS. All rights reserved.
Resumo:
Pyridinium hexafluorostannate, (C5H5NH)2SnF6, has been prepared by the reaction of stannous chloride or tin metal with pyridinium poly(hydrogen fluoride), PPHF, and identified by chemical analysis, IR and NMR (H-1, F-19, C-13). Making use of (C5H5NH)2SnF6 as a precursor, the following important hexafluorostannate salts have been synthesized in high yields at room temperature by ionic exchange: M2SnF6 (M = NH4, Na, K, Rb, Cs) and BaSnF6. These salts have been characterised by chemical analysis and infrared spectroscopy. Indexed powder X-ray diffraction data for Na2SnF6, Rb2SnF6 and Cs2SnF6 have been reported.
Resumo:
Herein we present a simple and highly efficient method for the synthesis of beta and gamma-amino thiols via regioselective ring opening of sulfamidates with tetrathiomolybdate 1. The generality of this methodology has been shown by synthesizing carbohydrate derived beta-amino thiol. The scope and versatility of this methodology has been demonstrated by synthesizing biologically important unnatural amino acids like isocysteines in optically pure form. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
We report Raman studies on powder samples of the charge transfer complex (TTF)(x)C60Br8 at room temperature. The phonons show considerable softening with respect to the frequencies observed in the Raman spectrum of solid C60Br8. The strongest mode at 1464 cm(-1) in C60Br8 is red shifted to a doublet with peaks at 1414 and 1421 cm(-1), implying an average phonon softening Delta omega of -47 cm(-1). A comparison with the phonon softening of the corresponding A(g)(2) mode in alkali-doped C-60 (Delta omega similar to -36 cm(-1) for A(6)C(60), A = K, Rb or Cs) suggests that 8 electrons are transferred per C60Br8 molecule in the charge transfer complex. The mode at 503 cm(-1) in C60Br8 is shifted upwards, similar to that in A(6)C(60) compounds.
Resumo:
Pyridinium hexafluorotitanate, (C5H5NH)(2)TiF6, has been prepared by the reaction of titanium metal with pyridinium poly(hydrogen fluoride), PPHF, at room temperature. Making use of (C5H5NH)(2)TiF6 as a precursor, ammonium and alkali metal hexafluorotitanates, M(2)TiF(6) (M = NH4, Na, K, Rb and Cs) have been synthesized by metathesis. These hexafluorotitanates have been characterized by chemical analyses, infrared and NMR (H-1 and F-19) spectroscopy and powder X-ray diffraction methods. Indexed powder X-ray diffraction data for Rb2TiF6 and Cs2TiF6 have been reported.
Resumo:
Triplet lifetimes have been determined for the diastereomers of a broad set of butane-l,4-dione derivatives (1-3). A remarkable dependence of lifetimes on conformational preferences is revealed in that the lifetimes are shorter for the meso diastereomers of 1-3 than those for the racemic ones. The intramolecular beta-phenyl quenching is promoted in the case of meso diastereomers by virtue of the gauche relationship between the excited carbonyl group and the beta-aryl ring, while a distal arrangement in the lowest energy conformation (H-anti) in racemic diastereomers prevents such a deactivation. The involvement of charge transfer in the intramolecular beta-phenyl quenching is suggested by the correlation of the triplet lifetimes of the meso diastereomers of compounds 2 with the nature of the substituent on the beta-phenyl rings. In the case of racemic diastereomers, beta-methoxy substitution on the beta-phenyl ring (2-OCH3, 3-OCH3) also led to a decrease of the triplet lifetimes when compared to those of the nonsubstituted compounds (2-H, 3-H). This shortening is accounted for by the deactivation of a small proportion of the excited molecules through beta-phenyl quenching. In addition to the above factors, the lifetimes in the case of meso diastereomers can further be controlled by increasing the energy spacing between the T-1 and T-2 states, since beta-phenyl quenching occurs from the latter for compounds 2 and 3. Through a rational conformational control, a surprisingly long triplet lifetime (300 ns) has been measured for the first time for a purely n,pi* triplet-excited beta-phenylpropiophenone dimer (1-rac).
Resumo:
Triammonium hydrogen disulphate, (NH4)(3)H(SO4)(2), belongs to the family of crystal structures M3H(XO4)(2) (with M = NH4, K, Rb, Cs, and X = S, Se) which display super protonic phases at elevated temperatures, while at room temperature these are relatively poor proton conductors. The crystal structure of triammonium hydrogen disulphate has been determined by X-ray diffraction at -90 degrees C and the variation in the characteristics of the hydrogen bond is discussed in comparison with that of the structures at -110 degrees C and room temperature. It is concluded that the mechanics involving the proton migration in such systems is realised in terms of the variations in the hydrogen bond features with temperature.
Resumo:
A series of bile acid-based crown ethers (7a-c,12 and 13) were easily constructed from readily available precursors. Measurement of association constants (K-a) with alkali metal picrates in CHCl3 showed that azacrown ethers 7a-c and Chola-Cuowns 12 and 13 show greater binding towards Rb+ and K+. The presence of the aromatic moieties showed subtle changes in the binding properties. Insight II minimized structures show very different conformations of aromatic units in 7a-b and 13.
Resumo:
The trans- and cis-stilbenes upon inclusion in NaY zeolite are thermally stable. Direct excitation and triplet sensitization results in geometric isomerization and the excited state behavior under these conditions are similar to that in solution. Upon direct excitation, a photostationary state consisting of 65% cis and 35% trans isomers is established. Triplet sensitization with 2-acetonaphthone gave a photostationary state consisting of 63% cis and 37% trans isomers. These numbers are similar to the ones obtained in solution. Thus, the presence of cations and the confined space within the zeolite have very little influence on the overall chemistry during direct and triplet sensitization. However, upon electron transfer sensitization with N-methylacridinium (NMA) as the sensitizer within NaY, isomerization from cis-stilbene radical cation to trans-stilbene occurs and the recombination of radical ions results in triplet stilbene. Prolonged irradiation gave a photostationary state (65% cis and 35% trans) similar to triplet sensitization. This behavior is unique to the zeolite and does not take place in solution. Steady state fluorescence measurements showed that the majority of stilbene molecules are close to the N-methylacridinium sensitizer. Diffuse reflectance flash photolysis studies established that independent of the isomer being sensitized only trans radical cation is formed. Triplet stilbene is believed to be generated via recombination of stilbene radical cation and sensitizer radical anion. One should be careful in using acidic HY zeolite as a medium for photoisomerization of stilbenes. In our hands, in these acidic zeolites isomerization dominated the photoisomerization. (C) 2002 Elsevier Science B.V. All rights reserved.