61 resultados para RAYS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cadmium selenide (CdSe) thin films have been successfully prepared by the electrodeposition technique on indium doped tin oxide (ITO) substrates with aqueous solutions of cadmium sulphate and selenium dioxide. The deposited films were characterized with X-ray diffraction (XRD), scanning electron microscope (SEM), energy dispersive analysis by X-rays (EDAX), photoluminescence (PL), UV spectrometry and electrical resistivity measurements. XRD analysis shows that the films are polycrystalline in nature with hexagonal crystalline structure. The various parameters such as crystallite size, micro strain, dislocation density and texture coefficients were evaluated. SEM study shows that the total substrate surface is well covered with uniformly distributed spherical shaped grains. Photoluminescence spectra of films were recorded to understand the emission properties of the films. The presence of direct transition with band gap energy 1.75 eV is established from optical studies. The electrical resistivity of the thin films is found to be 10(6) Omega cm and the results are discussed. (c) 2011 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hexagonal Dy(OH)(3) and cubic Dy2O3 nanorods were prepared by hydrothermal method. Dy(OH)(3) nanorods was directly obtained at 180 degrees C for 20 h after hydrothermal treatment whereas subsequently heat treatment at 750 degrees C for 2 h gives pure cubic Dy2O3. SEM micrographs reveal that needle shaped rods with different sizes were observed in both the phases. TEM results also confirm this. The TL response of hexagonal Dy(OH)(3) and cubic Dy2O3 nanorods have been analyzed for gamma-irradiation over a wide range of exposures (1-5 kGy). TL glow peak intensity increases with gamma dose in both the phases. The activation energy (E), order of kinetics (6), and frequency factor (s) for both the phases have been determined using Chen's peak shape method. The simple glow curve shape, structure and linear response to gamma-irradiation over a large span of exposures makes the cubic Dy2O3 as a useful dosimetric material to estimate high exposures of gamma-rays. (c) 2012 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The magnetorotational instability (MRI) is a crucial mechanism of angular momentum transport in a variety of astrophysical accretion disks. In systems accreting at well below the Eddington rate, such as the central black hole in the Milky Way (Sgr A*), the plasma in the disk is essentially collisionless. We present a nonlinear study of the collisionless MRI using first-principles particle-in-cell plasma simulations. We focus on local two-dimensional (axisymmetric) simulations, deferring more realistic three-dimensional simulations to future work. For simulations with net vertical magnetic flux, the MRI continuously amplifies the magnetic field, B, until the Alfven velocity, v(A), is comparable to the speed of light, c (independent of the initial value of v(A)/c). This is consistent with the lack of saturation of MRI channel modes in analogous axisymmetric MHD simulations. The amplification of the magnetic field by the MRI generates a significant pressure anisotropy in the plasma (with the pressure perpendicular to B being larger than the parallel pressure). We find that this pressure anisotropy in turn excites mirror modes and that the volume-averaged pressure anisotropy remains near the threshold for mirror mode excitation. Particle energization is due to both reconnection and viscous heating associated with the pressure anisotropy. Reconnection produces a distinctive power-law component in the energy distribution function of the particles, indicating the likelihood of non-thermal ion and electron acceleration in collisionless accretion disks. This has important implications for interpreting the observed emission-from the radio to the gamma-rays-of systems such as Sgr A*.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gd 2O 3 nanoparticles (27-60nm) have been synthesized by the low temperature solution combustion method using citric acid, urea, glycine and oxalyl dihydrazide (ODH) as fuels in a short time. The structural and luminescence properties have been carried out using powder X-ray diffraction (PXRD), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), Raman, UV-Vis, photoluminescence (PL) and thermoluminescence (TL) techniques. The optical band gap values were estimated for as formed and 800°C calcined samples. The band gap values in as-formed and calcined samples were found to be in the range 4.89-5.59eV. It is observed that, the band gap values are lower for as-formed products and it has been attributed to high degree of structural defects. However, in calcined samples, structure becomes more order with reduced structure defects. Upon 270nm excitation, deep blue UV-band at �390nm along with blue (420-482nm), green (532nm) and red emission (612nm) was observed. The 390nm emission peak may be attributed to recombination of delocalized electron close to the conduction band with a single charged state of surface oxygen vacancy. TL measurements were carried out on Gd 2O 3 prepared by different fuels by irradiating with γ-rays (1kGy). A well resolved glow peak at 230°C was observed for all the samples. It is observed that TL intensity is found to be higher in for urea fuel when compared to others. From TL glow curves the kinetic parameters were estimated using Chen's peak shape method and results are discussed in detail. © 2012 Elsevier B.V.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Quantum fields written on noncommutative spacetime (Groenewold-Moyal plane) obey twisted commutation relations. In this paper we show that these twisted commutation relations result in Hanbury-Brown Twiss (HBT) correlations that are distinct from that for ordinary bosonic or fermionic fields, and hence can provide useful information about underlying noncommutative nature of spacetime. The deviation from usual bosonic/fermionic statistics becomes pronounced at high energies, suggesting that a natural place is to look at Ultra High Energy Cosmic Rays (UHECRs). Since the HBT correlations are sensitive only to the statistics of the particles, observations done with UHECRs are capable of providing unambiguous signatures of noncommutativity, with-out any detailed knowledge of the mechanism and source of origin of UHECRs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Undoped and co-doped (Ag, Co) ZnO powders were synthesized by chemical co-precipitation method without using any capping agent. The X-ray diffraction results indicate that the undoped and co-doped ZnO powders have pure hexagonal structure and are consisting of nanosized single-crystalline particles. The size of the nanoparticles increases with increasing Ag concentration from 1 to 5 mol% as compared to that of undoped ZnO. The presence of substitution dopants of Ag and Co in the ZnO host material was confirmed by the Energy dispersive analysis of X-rays (EDAX). Optical absorption measurements indicate blue shift and red-shift in the absorption band edge upon doping concentration of Ag and blue emission was observed by photoluminescence (PL) studies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Three refractory coarse grained CAIs from the Efremovka CV3 chondrite, one (E65) previously shown to have formed with live Ca-41, were studied by ion microprobe for their Al-26-Mg-26 and Be-10-B-10 systematic in order to better understand the origin of Be-10. The high precision Al-Mg data and the inferred Al-26/Al-27 values attest that the precursors of the three CAIs evolved in the solar nebula over a period of few hundred thousand years before last melting-crystallization events. The initial Be-10/Be-9 ratios and delta B-10 values defined by the Be-10 isochrons for the three Efremovka CAIs are similar within errors. The CAI Be-10 abundance in published data underscores the large range for initial Be-10/Be-9 ratios. This is contrary to the relatively small range of Al-26/Al-27 variations in CAIs around the canonical ratio. Two models that could explain the origin of this large Be-10/Be-9 range are assessed from the collateral variations predicted for the initial delta B-10 values: (i) closed system decay of Be-10 from a ``canonical'' Be-10/Be-9 ratio and (ii) formation of CAIs from a mixture of solid precursors and nebula gas irradiated during up to a few hundred thousand years. The second scenario is shown to be the most consistent with the data. This shows that the major fraction of Be-10 in CAIs was produced by irradiation of refractory grains, while contributions of galactic cosmic rays trapping and early solar wind irradiation are less dominant. The case for Be-10 production by solar cosmic rays irradiation of solid refractory precursors poses a conundrum for Ca-41 because the latter is easily produced by irradiation and should be more abundant than what is observed in CAIs. Be-10 production by irradiation from solar energetic particles requires high Ca-41 abundance in early solar system, however, this is not observed in CAIs. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is particularly appropriate that the Journal of the Indian Institute of Science is bringing out a commemorative issue to mark the International Year of Crystallography 2014 (IYCr2014). India has had a strong crystallographic tradition, and the earliest work in what may be described as structural crystallography from this country is the work of K. Banerjee on the determination of the crystal structure of naphthalene in 1930. The Indian Institute of Science itself has played no small part in establishing and sustaining the subject of crystallography in this country. A large number of papers in this special issue are written by authors who have either have been trained in the Institute or who have some kind of professional association with this organization. In this article I will try to capture some unique features that characterize the intersection of the crystallographic and the chemical domains, mostly as they pertain to the Indian contribution to this subject. Crystallography is of course is as old as chemistry itself, and some would say it is even older. The relationships between chemistry and crystallography go back to much before the discovery of diffraction of X-rays by crystals.The discovery of polymorphism by Mitscherlisch in 1822, Haüy’s formulation of the molecule integrante, and the work of Fedorov and Groth on the identification of crystals from their morphology alone, are well known examples of such relationships.A very early article by Tutton speaks of “crystallo-chemical analysis”. In this article, I shall, however, be dealing with the interplay of chemistry and crystallography only in the post diffraction era, that is, after 1912. Much had been written and said about chemical crystallography, and even within the context of the present special issue, there is a review of chemical crystallography in India including some futuristic trends. This topic was also reviewed by Nangia in a special publication brought out by Indian Academy of Sciences in 2009,and by Desiraju in a special publication brought out by the Indian National Science Academy in 2010. A rather detailed account of crystallography in India appeared in 2007 in the newsletter of the International Union of Crystallography (IUCr) in which chemical crystallography was detailed. Since all these publications are fairly recent there is little need for me to attempt a comprehensive coverage of chemical crystallography in India in this short review

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pure cubic zirconia (ZrO2) nanopowder is prepared for the first time by simple low temperature solution combustion method without calcination. The product is characterized by Powder X-ray Diffraction (PXRD), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Fourier Transform Infra Red spectroscopy (FTIR) and Ultraviolet-Visible spectroscopy (UV-Vis). The PXRD showed the formation of pure stable cubic ZrO2 nanopowders with average crystallite size ranging from 6 to 12 nm. The lattice parameters were calculated from Rietveld refinement method. SEM micrograph shows fluffy, mesoporous, agglomerated particles with large number of voids. TEM micrograph shows honey comb like arrangement of particles with particle size similar to 10 nm. The PL emission spectrum excited at 210 nm and 240 nm consists of intense bands centered at similar to 365 and similar to 390 nm. Both the samples show shoulder peak at 420 nm, along with four weak emission bands at similar to 484, similar to 528, similar to 614 and similar to 726 nm. TL studies were carried out pre-irradiating samples with gamma-rays ranging from 1 to 5 KGy at room temperature. A well resolved glow peak at 377 degrees C is recorded which can be ascribed to deep traps. With increase in gamma radiation there is linear increase in TL intensity which shows the possible use of ZrO2 as dosimetric material. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dysprosium oxide (Dy2O3) nanopowders were prepared by co-precipitation (CP) and eco-friendly green combustion (GC) routes. SEM micrographs prepared by CP route show smooth rods with various lengths and diameters while, GC route show porous, agglomerated particles. The results were further confirmed by TEM. Thermoluminescence (TL) responses of the nanopowder prepared by both the routes were studied using gamma-rays. A well resolved glow peak at 353 degrees C along with less intense peak at 183 degrees C was observed in GC route while, in CP a single glow peak at 364 degrees C was observed. The kinetic parameters were estimated using Chen's glow peak route. Photoluminescence (PL) of Dy2O3 shows peaks at 481, 577,666 and 756 nm which were attributed to Dy3+ transitions of F-4(9/2)-H-6(15/2), H-6(11/2), H-6(11/2) and H-6(9/2), respectively. Color co-ordinate values were located in the white region as a result the product may be useful for the fabrication of WLED'S. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bulk samples of S40Se60,Sb-x (with x=10, 20, 30 and 40 at. %) were prepared from high purity chemicals by melt quenching technique. The samples compositions were confirmed by using energy dispersive analysis of X-rays. X-ray diffraction studies revealed that all the samples have poly-crystalline phase. The variation in optical properties with compositional has been investigated by X-ray photoelectron spectroscopy and Raman spectroscopy. The optical band gap of the thin films is found to be decreased with composition. Increasing Sb content was found to affect the structural and optical properties of bulk samples. The intensity of core level spectra changes with the addition of Sb clearly interprets the optical properties change due to compositional variation. The Raman shift and new peak formation in these samples clearly show the structural modifications due to Sb addition.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

One-dimensional (1D) zinc oxide (ZnO) hexagonal rods have been successfully synthesized by surfactant free hydrothermal process at different temperatures. It can be found that the reaction temperature play a crucial role in the formation of ZnO uniform hexagonal rods. The possible formation processes of 1-D ZnO hexagonal rods were investigated. The zinc hydroxide acts as the morphology-formative intermediate for the formation of ZnO nanorods. Upon excitation at 325 nm, the sample prepared at 180 degrees C show several emission bands at 400 nm (similar to 3.10 eV), 420 nm (similar to 2.95 eV), 482 nm (similar to 2.57 eV) and 524 nm (similar to 2.36 eV) corresponding to different kind of defects. TL studies were carried out by pre-irradiating samples with gamma-rays ranging from 1 to 7 kGy at room temperature. A well resolved glow peak at similar to 354 degrees C was recorded which can be ascribed to deep traps. Furthermore, the defects associated with surface states in ZnO nano-structures are characterized by electron paramagnetic resonance. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Structural Health Monitoring (SHM) systems require integration of non-destructive technologies into structural design and operational processes. Modeling and simulation of complex NDE inspection processes are important aspects in the development and deployment of SHM technologies. Ray tracing techniques are vital simulation tools to visualize the wave path inside a material. These techniques also help in optimizing the location of transducers and their orientation with respect to the zone of interrogation. It helps in increasing the chances of detection and identification of a flaw in that zone. While current state-of-the-art techniques such as ray tracing based on geometric principle help in such visualization, other information such as signal losses due to spherical or cylindrical shape of wave front are rarely taken into consideration. The problem becomes a little more complicated in the case of dispersive guided wave propagation and near-field defect scattering. We review the existing models and tools to perform ultrasonic NDE simulation in structural components. As an initial step, we develop a ray-tracing approach, where phase and spectral information are preserved. This enables one to study wave scattering beyond simple time of flight calculation of rays. Challenges in terms of theory and modelling of defects of various kinds are discussed. Various additional considerations such as signal decay and physics of scattering are reviewed and challenges involved in realistic computational implementation are discussed. Potential application of this approach to SHM system design is highlighted and by applying this to complex structural components such as airframe structures, SHM is demonstrated to provide additional value in terms of lighter weight and/or longevity enhancement resulting from an extension of the damage tolerance design principle not compromising safety and reliability.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In concentrated solar power(CSP) generating stations, incident solar energy is reflected from a large number of mirrors or heliostats to a faraway receiver. In typical CSP installations, the mirror needs to be moved about two axes independently using two actuators in series with the mirror effectively mounted at a single point. A three degree-of-freedom parallel manipulator, namely the 3-RPS parallel manipulator, is proposed to track the sun. The proposed 3-RPS parallel manipulator supports the load of the mirror, structure and wind loading at three points resulting in less deflection, and thus a much larger mirror can be moved with the required tracking accuracy and without increasing the weight of the support structure. The kinematics equations to determine motion of the actuated prismatic joints in the 3-RPS parallel manipulator such that the sun's rays are reflected on to a stationary receiver are developed. Using finite element analysis, it is shown that for same sized mirror, wind loading and maximum deflection requirement, the weight of the support structure is between 15% and 60% less with the 3-RPS parallel manipulator when compared to azimuth-elevation or the target-aligned configurations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using hydrodynamical simulations, we show for the first time that an episode of star formation in the centre of the Milky Way, with a star formation rate (SFR) similar to 0.5 M-circle dot yr(-1) for similar to 30 Myr, can produce bubbles that resemble the Fermi bubbles (FBs), when viewed from the solar position. The morphology, extent and multiwavelength observations of FBs, especially X-rays, constrain various physical parameters such as SFR, age, and the circumgalactic medium (CGM) density. We show that the interaction of the CGM with the Galactic wind driven by star formation in the central region can explain the observed surface brightness and morphological features of X-rays associated with the FBs. Furthermore, assuming that cosmic ray electrons are accelerated in situ by shocks and/or turbulence, the brightness and morphology of gamma-ray emission and the microwave haze can be explained. The kinematics of the cold and warm clumps in our model also matches with recent observations of absorption lines through the bubbles.