66 resultados para Power distribution planning


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider a dense, ad hoc wireless network confined to a small region, such that direct communication is possible between any pair of nodes. The physical communication model is that a receiver decodes the signal from a single transmitter, while treating all other signals as interference. Data packets are sent between source-destination pairs by multihop relaying. We assume that nodes self-organise into a multihop network such that all hops are of length d meters, where d is a design parameter. There is a contention based multiaccess scheme, and it is assumed that every node always has data to send, either originated from it or a transit packet (saturation assumption). In this scenario, we seek to maximize a measure of the transport capacity of the network (measured in bit-meters per second) over power controls (in a fading environment) and over the hop distance d, subject to an average power constraint. We first argue that for a dense collection of nodes confined to a small region, single cell operation is efficient for single user decoding transceivers. Then, operating the dense ad hoc network (described above) as a single cell, we study the optimal hop length and power control that maximizes the transport capacity for a given network power constraint. More specifically, for a fading channel and for a fixed transmission time strategy (akin to the IEEE 802.11 TXOP), we find that there exists an intrinsic aggregate bit rate (Thetaopt bits per second, depending on the contention mechanism and the channel fading characteristics) carried by the network, when operating at the optimal hop length and power control. The optimal transport capacity is of the form dopt(Pmacrt) x Thetaopt with dopt scaling as Pmacrt 1 /eta, where Pmacrt is the available time average transmit power and eta is the path loss exponent. Under certain conditions on the fading distribution, we then pro- - vide a simple characterisation of the optimal operating point.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper proposes a method of short term load forecasting with limited data, applicable even at 11 kV substation levels where total power demand is relatively low and somewhat random and weather data are usually not available as in most developing countries. Kalman filtering technique has been modified and used to forecast daily and hourly load. Planning generation and interstate energy exchange schedule at load dispatch centre and decentralized Demand Side Management at substation level are intended to be carried out with the help of this short term load forecasting technique especially to achieve peak power control without enforcing load-shedding.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The development of a neural network based power system damping controller (PSDC) for a static Var compensator (SVC), designed to enhance the damping characteristics of a power system network representing a part of the Electricity Generating Authority of Thailand (EGAT) system is presented. The proposed stabilising controller scheme of the SVC consists of a neuro-identifier and a neuro-controller which have been developed based on a functional link network (FLN) model. A recursive online training algorithm has been utilised to train the two networks. The simulation results have been obtained under various operating conditions and disturbance cases to show that the proposed stabilising controller can provide a better damping to the low frequency oscillations, as compared to the conventional controllers. The effectiveness of the proposed stabilising controller has also been compared with a conventional power system stabiliser provided in the generator excitation system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electric power utilities are installing distribution automation systems (DAS) for better management and control of the distribution networks during the recent past. The success of DAS, largely depends on the availability of reliable database of the control centre and thus requires an efficient state estimation (SE) solution technique. This paper presents an efficient and robust three-phase SE algorithm for application to radial distribution networks. This method exploits the radial nature of the network and uses forward and backward propagation scheme to estimate the line flows, node voltage and loads at each node, based on the measured quantities. The SE cannot be executed without adequate number of measurements. The extension of the method to the network observability analysis and bad data detection is also discussed. The proposed method has been tested to analyze several practical distribution networks of various voltage levels and also having high R:X ratio of lines. The results for a typical network are presented for illustration purposes. © 2000 Elsevier Science S.A. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In developing countries, a high rate of growth in the demand for electric energy is felt, and so the addition of new generating units becomes inevitable. In deregulated power systems, private generating stations are encouraged to add new generations. Some of the factors considered while placing a new generating unit are: availability of esources, ease of transmitting power, distance from the load centre, etc. Finding the most appropriate locations for generation expansion can be done by running repeated power flows and carrying system studies like analyzing the voltage profile, voltage stability, loss analysis, etc. In this paper a new methodology is proposed which will mainly consider the existing network topology. A concept of T-index is introduced in this paper, which considers the electrical distances between generator and load nodes. This index is used for ranking the most significant new generation expansion locations and also indicates the amount of permissible generations that can be installed at these new locations. This concept facilitates for the medium and long term planning of power generation expansions within the available transmission corridors. Studies carried out on an EHV equivalent 10-bus system and IEEE 30 bus systems are presented for illustration purposes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Present day power systems are growing in size and complexity of operation with inter connections to neighboring systems, introduction of large generating units, EHV 400/765 kV AC transmission systems, HVDC systems and more sophisticated control devices such as FACTS. For planning and operational studies, it requires suitable modeling of all components in the power system, as the number of HVDC systems and FACTS devices of different type are incorporated in the system. This paper presents reactive power optimization with three objectives to minimize the sum of the squares of the voltage deviations (ve) of the load buses, minimization of sum of squares of voltage stability L-indices of load buses (¿L2), and also the system real power loss (Ploss) minimization. The proposed methods have been tested on typical sample system. Results for Indian 96-bus equivalent system including HVDC terminal and UPFC under normal and contingency conditions are presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report a universal large deviation behavior of spatially averaged global injected power just before the rejuvenation of the jammed state formed by an aging suspension of laponite clay under an applied stress. The probability distribution function (PDF) of these entropy consuming strongly non-Gaussian fluctuations follow an universal large deviation functional form described by the generalized Gumbel (GG) distribution like many other equilibrium and nonequilibrium systems with high degree of correlations but do not obey the Gallavotti-Cohen steady-state fluctuation relation (SSFR). However, far from the unjamming transition (for smaller applied stresses) SSFR is satisfied for both Gaussian as well as non-Gaussian PDF. The observed slow variation of the mean shear rate with system size supports a recent theoretical prediction for observing GG distribution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider a dense, ad hoc wireless network, confined to a small region. The wireless network is operated as a single cell, i.e., only one successful transmission is supported at a time. Data packets are sent between source-destination pairs by multihop relaying. We assume that nodes self-organize into a multihop network such that all hops are of length d meters, where d is a design parameter. There is a contention-based multiaccess scheme, and it is assumed that every node always has data to send, either originated from it or a transit packet (saturation assumption). In this scenario, we seek to maximize a measure of the transport capacity of the network (measured in bit-meters per second) over power controls (in a fading environment) and over the hop distance d, subject to an average power constraint. We first motivate that for a dense collection of nodes confined to a small region, single cell operation is efficient for single user decoding transceivers. Then, operating the dense ad hoc wireless network (described above) as a single cell, we study the hop length and power control that maximizes the transport capacity for a given network power constraint. More specifically, for a fading channel and for a fixed transmission time strategy (akin to the IEEE 802.11 TXOP), we find that there exists an intrinsic aggregate bit rate (Theta(opt) bits per second, depending on the contention mechanism and the channel fading characteristics) carried by the network, when operating at the optimal hop length and power control. The optimal transport capacity is of the form d(opt)((P) over bar (t)) x Theta(opt) with d(opt) scaling as (P) over bar (t) (1/eta), where (P) over bar (t) is the available time average transmit power and eta is the path loss exponent. Under certain conditions on the fading distribution, we then provide a simple characterization of the optimal operating point. Simulation results are provided comparing the performance of the optimal strategy derived here with some simple strategies for operating the network.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ceramic/Porcelain suspension disc insulators are widely used in power systems to provide electrical insulation and mechanically support for high-voltage transmission lines. These insulators are subjected to a variety of stresses, including mechanical, electrical and environmental. These stresses act in unison. The exact nature and magnitude of these stresses vary significantly and depends on insulator design, application and its location. Due to various reasons the insulator disc can lose its electrical insulation properties without any noticeable mechanical failure. Such a condition while difficult to recognize, can enhance the stress on remaining healthy insulator discs in the string further may lead to a flashover. To understand the stress enhancement due to faulty discs in a string, attempt has been made to simulate the potential and electric field profiles for various disc insulators presently used in the country. The results of potential and electric filed stress obtained for normal and strings with faulty insulator discs are presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Resin impregnated paper (RIP) is a relatively new insulation system recommended for the use in transformer bushings. In the recent past, RIP has acquired prominence as insulation in bushings, over conventional oil impregnated paper (OIP), in view of its overwhelming advantages the more important among them being low dielectric loss and possibility for positioning the bushing at any desired angle over the transformer. In addition, the fact that such systems do not pose problems of fire hazard is counted as a very important consideration. The disadvantage of RIP compared to OIP, however, is its much higher cost and involved manufacturing process. The temperature rise in RIP bushings under normal operating conditions is seen to be a difficult parameter to control in view of the limited options for effective cooling. It is therefore essential to take serious note of this aspect, to arrest rapid deterioration of bushing. The degradation of dry-type insulation such as RIP is often due to thermal stress. The long time performance thereof, depends strongly, on the maximum operating temperature. With this in view, the Authors have developed a theoretical model and computational method to study the temperature distribution in the body of insulation. The Authors consider that the basis for the model as being the temperature and electric stress aided AC conductivity. The ensuing heat balance (continuity) equations in 2-D cylindrical geometry are treated as a Dirichelet-Neumann boundary value problem.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we consider the downlink of an OFDM cellular system. The objective is to maximise the system utility by means of fractional frequency reuse and interference planning. The problem is a joint scheduling and power allocation problem. Using gradient scheduling scheme, the above problem is transformed to a problem of maximising weighted sum-rate at each time slot. At each slot, an iterative scheduling and power allocation algorithm is employed to address the weighted sum-rate maximisation problem. The power allocation problem in the above algorithm is a nonconvex optimisation problem. We study several algorithms that can tackle this part of the problem. We propose two modifications to the above algorithms to address practical and computational feasibility. Finally, we compare the performance of our algorithm with some existing algorithms based on certain achieved system utility metrics. We show that the practical considerations do not affect the system performance adversely.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The potential merit of laser-induced breakdown spectroscopy (LIBS) has been demonstrated for detection and quantification of trace pollutants trapped in snow/ice samples. In this technique, a high-power pulsed laser beam from Nd:YAG Laser (Model no. Surelite III-10, Continuum, Santa Clara, CA, USA) is focused on the surface of the target to generate plasma. The characteristic emissions from laser-generated plasma are collected and recorded by a fiber-coupled LIBS 2000+ (Ocean Optics, Santa Clara, CA, USA) spectrometer. The fingerprint of the constituents present in the sample is obtained by analyzing the spectral lines by using OOI LIBS software. Reliable detection of several elements like Zn, Al, Mg, Fe, Ca, C, N, H, and O in snow/ice samples collected from different locations (elevation) of Manali and several snow samples collected from the Greater Himalayan region (from a cold lab in Manali, India) in different months has been demonstrated. The calibration curve approach has been adopted for the quantitative analysis of these elements like Zn, Al, Fe, and Mg. Our results clearly demonstrate that the level of contamination is higher in those samples that were collected in the month of January in comparison to those collected in February and March.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We propose power allocation algorithms for increasing the sum rate of two and three user interference channels. The channels experience fast fading and there is an average power constraint on each transmitter. Our achievable strategies for two and three user interference channels are based on the classification of the interference into very strong, strong and weak interferences. We present numerical results of the power allocation algorithm for two user Gaussian interference channel with Rician fading with mean total power gain of the fade Omega = 3 and Rician factor kappa = 0.5 and compare the sum rate with that obtained from ergodic interference alignment with water-filling. We show that our power allocation algorithm increases the sum rate with a gain of 1.66dB at average transmit SNR of 5dB. For the three user Gaussian interference channel with Rayleigh fading with distribution CN(0, 0.5), we show that our power allocation algorithm improves the sum rate with a gain of 1.5dB at average transmit SNR of 5dB.