123 resultados para Polyvinylidene fluoride
Resumo:
Studies of the reaction of metal chlorides, MCl2 (M = Mn, Co, Ni, Cu, Zn) with PPHF at room temperature have shown that Mn, Co and Zn form the corresponding metal fluorides, MF2, while Ni and Cu form their dipyridine metal(II) dichloride complexes. Nickel and copper complexes further undergo fluorination and complexation by potassium hydrogen fluoride in PPHF to form KNiF3 and KCuF3.
Resumo:
The products of the reaction of pyridinium poly(hydrogen fluoride), PPHF, with KIO3, Na2SnO3, NaBiO3, K2CrO4, Na2MoO4 and Na2WO4 were KIO2F2; Na2SnF6; NaHF2, BiF3; K3CrF6, KHF2, (PyH)(3)CrF6; NaHF2, (PyH)(2)MoO2F4.2NaHF(2); and (PyH)(2)WO2F4.2NaHF(2), respectively, while KClO3, KBrO3 and KlO(4) react with complete decomposition to form KHF2 as the fluorinated product. This differential reactivity and mode of reaction has been discussed in terms of the oxidation state of the central atom, the nature and strength of the bonds and the complex behaviour of the formed intermediate or fluorinated products that undergo complexation or solvation with pyridine and/or hydrogen fluoride.
Resumo:
Probes based on anthra[1,2-d]imidazole-6,11-dione were designed and synthesized for selective ion sensing. Each probe acted as strong colorimetric sensors for fluoride and cyanide ions and exhibited intramolecular charge transfer (ICT) band, which showed significant red-shifts after addition of either the F(-) or CN(-) ion. One of the probes (2) showed selective colorimetric sensing for both cyanide and fluoride ions. In organic medium, 2 showed selective color change with fluoride and cyanide, whereas in aqueous organic medium it showed a ratiometric response selectively for cyanide ion.
Resumo:
The gamma-phase poly (vinylidene fluoride) (PVDF) films are usually prepared using dimethyl sulfoxide (DMSO) solvent, regardless of preparation temperature. Here we report the crystallization of both alpha and gamma-phase PVDF films by varying preparation temperature using DMSO solvent. The gamma-phase PVDF films were annealed at 70, 90, 110, 130 and 160 degrees C for five hours. The changes in the phase contents in the PVDF at different annealing conditions have been described. When thin films were annealed at 90 degrees C for 5 h, maximum percentage of beta-phase appears in PVDF thin films. The gamma-phase PVDF films completely converted to alpha-phase when they were annealed at 160 degrees C for 5 h. From X-ray diffraction (XRD), Fourier transform infrared spectrum (FTIR), differential scanning calorimetry (DSC) and Raman studies, it is confirmed that the PVDF thin films, cast from solution and annealed at 90 degrees C for 5 h, have maximum percentage of beta-phase. The beta-phase PVDF shows a remnant polarization of 4.9 mu C/cm(2) at 1400 kV/cm at 1 Hz.
Resumo:
Facile synthesis of two new dimesitylboryl appended BODIPYs is reported. The two dyads have similar fluorescent chromophores but differ in their molecular conformations. They exhibit dual fluorescence, intramolecular energy transfer between boryl and BODIPY chromophores and different fluorescence responses (emission enhancement and quenching) upon fluoride binding.
Resumo:
The present study is focussed at establishing an appropriate electrolyte system for developing electrochemically stable and fluorine (F) containing titania (F-TiO2) films on Cp Ti by micro-arc oxidation (MAO) technique. To fabricate the F-TiO2 films on Cp Ti, different electrolyte solutions of chosen concentrations of tri-sodium orthophosphate (TSOP, Na3PO4 center dot I2H2O), potassium hydroxide (KOH) and various F-containing compounds such as ammonium fluoride (NH4F), potassium fluoride (KF), sodium fluoride (NaF) and potassium fluorotitanate (K2TiF6) are employed. The structural and morphological characteristics, thickness and elemental composition of the developed films have been assessed by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) techniques. The in-vitro electrochemical corrosion behavior of the films was studied under Kokubo simulated body fluid (SBF) environment by potentiodynamic polarization, long term potential measurement and electrochemical impedance spectroscopy (EIS) methods. The XRD and SEM-EDS results show that the rutile content in the films vary in the range of 15-37 wt% and the F and P contents in the films is found to be in the range of 2-3 at% and 2.9-4.7 at% respectively, suggesting that the anatase to rutile phase transformation and the incorporation of F and P into the films are significantly controlled by the respective electrolyte solution. The SEM elemental mapping results show that the electrolyte borne F and P elements are incorporated and distributed uniformly in all the films. Among all the films under study, the film developed with 5 g TSOP+2 g KOH+3 g K2TiF6 electrolyte system exhibits considerably improved in-vitro corrosion resistance and therefore best suited for biomedical applications. (C) 2012 Elsevier Ltd and Techna Group S.r.l. All rights reserved.
Resumo:
Phosphogypsum is added to building materials to accelerate fly ash pozzolanic reaction and contributes to early strength development of concrete. The release of unacceptable fluoride levels by phoshogypsum on contact with water is a major impediment in its usage to manufacture building products because excess fluoride consumption causes dental and skeletal fluorosis. This paper examines the efficacy of fly ash pozzolanic reactions in controlling fluoride release by phosphogypsum. Fly ash (FA), sand (S), lime (L), and phosphogypsum (G) (FA-S-L-G) slurries are cured for various periods, and the fluoride released by the mix is monitored as a function of time. A substantial reduction in fluoride release was observed and is attributed to entrapment of phosphogypsum particles in a cementious matrix formed by fly ash-lime pozzolanic reactions coupled with consumption of fluoride in formation of insoluble compounds. The compressive strength developed by compacted FA-S-L-G specimens with time was observed to be a three-stage process; maximum strength mobilization occurred during 14 and 28days of curing at room temperature. Exposure of the compacted FA-S-L-G specimens to acidic and alkaline environments for 9 days did not impact their compressive strengths. (C) 2013 American Society of Civil Engineers.
Resumo:
The structure and photophysical properties of a new triad (borane-bithiophene-BODIPY) 1 have been investigated. Triad 1 exhibits unprecedented tricolour emission when excited at the borane centred high energy absorption band and also acts as a selective fluorescent and colorimetric sensor for fluoride ions with ratiometric response. The experimental results are supported by computational studies.
Resumo:
Structural dynamics, dielectric permittivity and ferroelectric properties in poly(vinylidene fluoride) (PVDF)/poly(methyl methacrylate) (PMMA) (PVDF/PMMA) blends with respect to crystalline morphology was systematically investigated in presence of amine functionalized MWNTs (NH2-MWNTs) using dielectric spectroscopy. The crystalline morphology and the crystallization driven demixing in the blends was assessed by light microscopy (LM), wide angle X-ray diffraction (WXRD) and, in situ, by shear rheology. The crystal nucleation activity of PVDF was greatly induced by NH2-MWNTs, which also showed two distinct structural relaxations in dielectric loss owing to mobility confinement of PVDF chains and smaller cooperative lengths. The presence of crystal-amorphous interphase was supported by the presence of interfacial polarization at lower frequencies in the dielectric loss spectra. On contrary, the control blends showed a single broad relaxation at higher frequency due to defective crystal nuclei. This was further supported by monitoring the dielectric relaxations during isothermal crystallization of PVDF in the blends. These observations were addressed with respect to the spherulite sizes which were observed to be larger in case of blends with NH2-MWNTs. Higher dielectric permittivity with minimal losses was also observed in blends with NH2-MWNTs as compared to neat PVDF. Polarization obtained using P-E (polarization-electric field) hysteresis loops was higher in case of blends with NH2-MWNTs in contrast to control blends and PVDF. These observations were corroborated with the charge trapped at the crystal-amorphous interphase and larger crystal sizes in the blends with NH2-MWNTs. The microstructure and localization of MWNTs were assessed using SEM.
Resumo:
Peripherally triarylborane decorated porphyrin (2) and its Zn(II) complex (3) have been synthesized. Compound 3 contains of two different Lewis acidic binding sites (Zn(II) and boron center). Unlike all previously known triarylborane based sensors, the optical responses of 3 toward fluoride and cyanide are distinctively different, thus enabling the discrimination of these two interfering anions. Metalloporphyrin 3 shows a multiple channel fluorogenic response toward fluoride and cyanide and also a selective visual colorimetric response toward cyanide. By comparison with model systems and from detailed photophysical studies on 2 and 3, we conclude that the preferential binding of fluoride occurs at the peripheral borane moieties resulting in the cessation of the EET (electronic energy transfer) process from borane to porphyrin core and with negligible negetive cooperative effects. On the other hand, cyanide binding occurs at the Zn(II) core leading to drastic changes in its absorption behavior which can be followed by the naked eye. Such changes are not observed when the boryl substituent is absent (e.g., Zn-TPP and TPP). Compounds 2 and 3 were also found to be capable of extracting fluoride from aqueous medium.
Resumo:
Two new dicyanovinyl (DCV) functionalized triarylboranes (Mes(2)B-pi-spacer-DCV, for 1: pi-spacer = C6H4, for 2: pi-spacer = 2,3,5,6-tetramethyl-phenyl) are reported. The molecular structures of 1 and 2 are similar except for the spacer which connects the boryl and DCV units. This small structural perturbation induces drastic changes in the optical properties of 1 and 2. Compound 2 shows weak dual fluorescence emission in nonpolar solvents and a stronger emission in polar solvents. Compound 1 is weakly fluorescent in polar environments but shows an intense single luminescence peak in less polar environments. Compound 1 exhibits a turn-off fluorescence response for both fluoride and cyanide: in contrast, 2 shows a turn on fluorescence response for both anions with different fluorescence signatures. The NMR titration studies reveal that for compound 2, fluoride binds to the boron centre and cyanide binds to the DCV unit. For compound 1, the fluoride ion binds to the boron center, whereas the CN- binds to both the Ar3B and DCV units.
Resumo:
Groundwater contamination is a serious concern in India. Major geogenic contaminants include fluoride, arsenic and iron, while common anthropogenic contaminants include nitrate, metals, organics and microbial contamination. Besides, known point and diffuse sources, groundwater c ontamination from inf iltration of pit to ilet leachate is an emerging concern. The study area of this paper is Kolar district in Karnataka that is hot spot of fluoride contamination. The absence of fluoride contamination in Mulbagal town and the alterations in groundwater chemistry from infiltration of pit toilet leachate motivated the author to examine the possible linkages between anthropogenic contamination and fluoride concentration in groundwater of Mulbagal town. Analysis of the groundwater chemistry revealed that the groundwater in Mulbagal town is under saturated with respect to calcite that suppresses the dissolution of fluorite and the fluoride concentration in the groundwater. The slightly acidic pH of the groundwater is considered responsible to facilitate calcite dissolution under saturation.
Resumo:
Three new V-shaped boryl-BODIPY dyads (1-3) were synthesized and structurally characterized. Compounds 1-3 are structurally close molecular siblings differing only in the number of methyl substituents on the BODIPY moiety that were found to play a major role in determining their photophysical behavior. The dyads show rare forms of multiple-channel emission characteristics arising from different extents of electronic energy transfer (EET) processes between the two covalently linked fluorescent chromophores (borane and BODIPY units). Insights into the origin and nature of their emission behavior were gained from comparison with closely related model molecular systems and related photophysical investigations. Because of the presence of the Lewis acidic triarylborane moiety, the dyads function as highly selective and sensitive fluoride sensors with vastly different response behaviors. When fluoride binds to the tricoordinate borane center, dyad 1 shows gradual quenching of its BODIPY-dominated emission due to the ceasing of the (borane to BODIPY) EET process. Dyad 2 shows a ratiometric fluorescence response for fluoride ions. Dyad 3 forms fluoride-induced nanoaggregates that result in fast and effective quenching of its fluorescence intensity just for similar to 0.3 ppm of analyte (i.e., 0.1 equiv 0.26 ppm of fluoride). The small structural alterations in these three structurally close dyads (1 - 3) result in exceptionally versatile and unique photophysical behaviors and remarkably diverse responses toward a single analyte, i.e., fluoride ion.