107 resultados para Polynomial approximation
Resumo:
Effective usage of image guidance by incorporating the refractive index (RI) variation in computational modeling of light propagation in tissue is investigated to assess its impact on optical-property estimation. With the aid of realistic patient breast three-dimensional models, the variation in RI for different regions of tissue under investigation is shown to influence the estimation of optical properties in image-guided diffuse optical tomography (IG-DOT) using numerical simulations. It is also shown that by assuming identical RI for all regions of tissue would lead to erroneous estimation of optical properties. The a priori knowledge of the RI for the segmented regions of tissue in IG-DOT, which is difficult to obtain for the in vivo cases, leads to more accurate estimates of optical properties. Even inclusion of approximated RI values, obtained from the literature, for the regions of tissue resulted in better estimates of optical properties, with values comparable to that of having the correct knowledge of RI for different regions of tissue.
Resumo:
The element-based piecewise smooth functional approximation in the conventional finite element method (FEM) results in discontinuous first and higher order derivatives across element boundaries Despite the significant advantages of the FEM in modelling complicated geometries, a motivation in developing mesh-free methods has been the ease with which higher order globally smooth shape functions can be derived via the reproduction of polynomials There is thus a case for combining these advantages in a so-called hybrid scheme or a `smooth FEM' that, whilst retaining the popular mesh-based discretization, obtains shape functions with uniform C-p (p >= 1) continuity One such recent attempt, a NURBS based parametric bridging method (Shaw et al 2008b), uses polynomial reproducing, tensor-product non-uniform rational B-splines (NURBS) over a typical FE mesh and relies upon a (possibly piecewise) bijective geometric map between the physical domain and a rectangular (cuboidal) parametric domain The present work aims at a significant extension and improvement of this concept by replacing NURBS with DMS-splines (say, of degree n > 0) that are defined over triangles and provide Cn-1 continuity across the triangle edges This relieves the need for a geometric map that could precipitate ill-conditioning of the discretized equations Delaunay triangulation is used to discretize the physical domain and shape functions are constructed via the polynomial reproduction condition, which quite remarkably relieves the solution of its sensitive dependence on the selected knotsets Derivatives of shape functions are also constructed based on the principle of reproduction of derivatives of polynomials (Shaw and Roy 2008a) Within the present scheme, the triangles also serve as background integration cells in weak formulations thereby overcoming non-conformability issues Numerical examples involving the evaluation of derivatives of targeted functions up to the fourth order and applications of the method to a few boundary value problems of general interest in solid mechanics over (non-simply connected) bounded domains in 2D are presented towards the end of the paper
Resumo:
We consider numerical solutions of nonlinear multiterm fractional integrodifferential equations, where the order of the highest derivative is fractional and positive but is otherwise arbitrary. Here, we extend and unify our previous work, where a Galerkin method was developed for efficiently approximating fractional order operators and where elements of the present differential algebraic equation (DAE) formulation were introduced. The DAE system developed here for arbitrary orders of the fractional derivative includes an added block of equations for each fractional order operator, as well as forcing terms arising from nonzero initial conditions. We motivate and explain the structure of the DAE in detail. We explain how nonzero initial conditions should be incorporated within the approximation. We point out that our approach approximates the system and not a specific solution. Consequently, some questions not easily accessible to solvers of initial value problems, such as stability analyses, can be tackled using our approach. Numerical examples show excellent accuracy. DOI: 10.1115/1.4002516]
Resumo:
A small-cluster approximation has been used to calculate the activation barriers for the d.c. conductivity in ionic glasses. The main emphasis of this approach is on the importance of the hitherto ignored polarization energy contribution to the total activation energy. For the first time it has been demonstrated that the d.c. conductivity activation energy can be calculated by considering ionic migration to a neighbouring vacancy in a smali cluster of ions consisting of face-sharing anion polyhedra. The activation energies from the model calculations have been compared with the experimental values in the case of highly modified lithium thioborate glasses.
Resumo:
Ground-state properties of the two-dimensional Hubbard model with point-defect disorder are investigated numerically in the Hartree-Fock approximation. The phase diagram in the p(point defect concentration)-delta(deviation from half filling) plane exhibits antiferromagnetic, spin-density-wave, paramagnetic, and spin-glass-like phases. The disorder stabilizes the antiferromagnetic phase relative to the spin-density-wave phase. The presence of U strongly enhances the localization in the antiferromagnetic phase. The spin-density-wave and spin-glass-like phases are weakly localized.
Resumo:
We consider three dimensional finite element computations of thermoelastic damping ratios of arbitrary bodies using Zener's approach. In our small-damping formulation, unlike existing fully coupled formulations, the calculation is split into three smaller parts. Of these, the first sub-calculation involves routine undamped modal analysis using ANSYS. The second sub-calculation takes the mode shape, and solves on the same mesh a periodic heat conduction problem. Finally, the damping coefficient is a volume integral, evaluated elementwise. In the only other decoupled three dimensional computation of thermoelastic damping reported in the literature, the heat conduction problem is solved much less efficiently, using a modal expansion. We provide numerical examples using some beam-like geometries, for which Zener's and similar formulas are valid. Among these we examine tapered beams, including the limiting case of a sharp tip. The latter's higher-mode damping ratios dramatically exceed those of a comparable uniform beam.
Resumo:
We develop four algorithms for simulation-based optimization under multiple inequality constraints. Both the cost and the constraint functions are considered to be long-run averages of certain state-dependent single-stage functions. We pose the problem in the simulation optimization framework by using the Lagrange multiplier method. Two of our algorithms estimate only the gradient of the Lagrangian, while the other two estimate both the gradient and the Hessian of it. In the process, we also develop various new estimators for the gradient and Hessian. All our algorithms use two simulations each. Two of these algorithms are based on the smoothed functional (SF) technique, while the other two are based on the simultaneous perturbation stochastic approximation (SPSA) method. We prove the convergence of our algorithms and show numerical experiments on a setting involving an open Jackson network. The Newton-based SF algorithm is seen to show the best overall performance.
Resumo:
We develop in this article the first actor-critic reinforcement learning algorithm with function approximation for a problem of control under multiple inequality constraints. We consider the infinite horizon discounted cost framework in which both the objective and the constraint functions are suitable expected policy-dependent discounted sums of certain sample path functions. We apply the Lagrange multiplier method to handle the inequality constraints. Our algorithm makes use of multi-timescale stochastic approximation and incorporates a temporal difference (TD) critic and an actor that makes a gradient search in the space of policy parameters using efficient simultaneous perturbation stochastic approximation (SPSA) gradient estimates. We prove the asymptotic almost sure convergence of our algorithm to a locally optimal policy. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
By using the strain smoothing technique proposed by Chen et al. (Comput. Mech. 2000; 25: 137-156) for meshless methods in the context of the finite element method (FEM), Liu et al. (Comput. Mech. 2007; 39(6): 859-877) developed the Smoothed FEM (SFEM). Although the SFEM is not yet well understood mathematically, numerical experiments point to potentially useful features of this particularly simple modification of the FEM. To date, the SFEM has only been investigated for bilinear and Wachspress approximations and is limited to linear reproducing conditions. The goal of this paper is to extend the strain smoothing to higher order elements and to investigate numerically in which condition strain smoothing is beneficial to accuracy and convergence of enriched finite element approximations. We focus on three widely used enrichment schemes, namely: (a) weak discontinuities; (b) strong discontinuities; (c) near-tip linear elastic fracture mechanics functions. The main conclusion is that strain smoothing in enriched approximation is only beneficial when the enrichment functions are polynomial (cases (a) and (b)), but that non-polynomial enrichment of type (c) lead to inferior methods compared to the standard enriched FEM (e.g. XFEM). Copyright (C) 2011 John Wiley & Sons, Ltd.
Resumo:
We consider the following question: Let S (1) and S (2) be two smooth, totally-real surfaces in C-2 that contain the origin. If the union of their tangent planes is locally polynomially convex at the origin, then is S-1 boolean OR S-2 locally polynomially convex at the origin? If T (0) S (1) a (c) T (0) S (2) = {0}, then it is a folk result that the answer is yes. We discuss an obstruction to the presumed proof, and provide a different approach. When dim(R)(T0S1 boolean AND T0S2) = 1, we present a geometric condition under which no consistent answer to the above question exists. We then discuss conditions under which we can expect local polynomial convexity.
Resumo:
This study aims to determine optimal locations of dual trailing-edge flaps and blade stiffness to achieve minimum hub vibration levels in a helicopter, with low penalty in terms of required trailing-edge flap control power. An aeroelastic analysis based on finite elements in space and time is used in conjunction with an optimal control algorithm to determine the flap time history for vibration minimization. Using the aeroelastic analysis, it is found that the objective functions are highly nonlinear and polynomial response surface approximations cannot describe the objectives adequately. A neural network is then used for approximating the objective functions for optimization. Pareto-optimal points minimizing both helicopter vibration and flap power ale obtained using the response surface and neural network metamodels. The two metamodels give useful improved designs resulting in about 27% reduction in hub vibration and about 45% reduction in flap power. However, the design obtained using response surface is less sensitive to small perturbations in the design variables.
Resumo:
The initial motivation for this paper is to discuss a more concrete approach to an approximation theorem of Axler and Shields, which says that the uniform algebra on the closed unit disc (D) over bar generated by z and h, where h is a nowhere-holomorphic harmonic function on D that is continuous up to partial derivative D, equals C((D) over bar). The abstract tools used by Axler and Shields make harmonicity of h an essential condition for their result. We use the concepts of plurisubharmonicity and polynomial convexity to show that, in fact, the same conclusion is reached if h is replaced by h + R, where R is a non-harmonic perturbation whose Laplacian is ``small'' in a certain sense.