54 resultados para Phylogenetic
Resumo:
1. Host-parasite interactions have the potential to influence broadscale ecological and evolutionary processes, levels of endemism, divergence patterns and distributions in host populations. Understanding the mechanisms involved requires identification of the factors that shape parasite distribution and prevalence. 2. A lack of comparative information on community-level host-parasite associations limits our understanding of the role of parasites in host population divergence processes. Avian malaria (haemosporidian) parasites in bird communities offer a tractable model system to examine the potential for pathogens to influence evolutionary processes in natural host populations. 3. Using cytochrome b variation, we characterized phylogenetic diversity and prevalence of two genera of avian haemosporidian parasites, Plasmodium and Haemoproteus, and analysed biogeographic patterns of lineages across islands and avian hosts, in southern Melanesian bird communities to identify factors that explain patterns of infection. 4. Plasmodium spp. displayed isolation-by-distance effects, a significant amount of genetic variation distributed among islands but insignificant amounts among host species and families, and strong local island effects with respect to prevalence. Haemoproteus spp. did not display isolation-by-distance patterns, showed marked structuring of genetic variation among avian host species and families, and significant host species prevalence patterns. 5. These differences suggest that Plasmodium spp. infection patterns were shaped by geography and the abiotic environment, whereas Haemoproteus spp. infection patterns were shaped predominantly by host associations. Heterogeneity in the complement and prevalence of parasite lineages infecting local bird communities likely exposes host species to a mosaic of spatially divergent disease selection pressures across their naturally fragmented distributions in southern Melanesia. Host associations for Haemoproteus spp. indicate a capacity for the formation of locally co-adapted host-parasite relationships, a feature that may limit intraspecific gene flow or range expansions of closely related host species.
Resumo:
In India, the low prevalence of HIV-associated dementia (HAD) in the Human immunodeficiency virus type 1 (HIV-1) subtype C infection is quite paradoxical given the high-rate of macrophage infiltration into the brain. Whether the direct viral burden in individual brain compartments could be associated with the variability of the neurologic manifestations is controversial. To understand this paradox, we examined the proviral DNA load in nine different brain regions and three different peripheral tissues derived from ten human subjects at autopsy. Using a highly sensitive TaqMan probe-based real-time PCR, we determined the proviral load in multiple samples processed in parallel from each site. Unlike previously published reports, the present analysis identified uniform proviral distribution among the brain compartments examined without preferential accumulation of the DNA in any one of them. The overall viral DNA burden in the brain tissues was very low, approximately 1 viral integration per 1000 cells or less. In a subset of the tissue samples tested, the HIV DNA mostly existed in a free unintegrated form. The V3-V5 envelope sequences, demonstrated a brain-specific compartmentalization in four of the ten subjects and a phylogenetic overlap between the neural and non-neural compartments in three other subjects. The envelope sequences phylogenetically belonged to subtype C and the majority of them were R5 tropic. To the best of our knowledge, the present study represents the first analysis of the proviral burden in subtype C postmortem human brain tissues. Future studies should determine the presence of the viral antigens, the viral transcripts, and the proviral DNA, in parallel, in different brain compartments to shed more light on the significance of the viral burden on neurologic consequences of HIV infection.
Resumo:
We carried out a large-scale phylogenetic analysis of fejervaryan (dicroglossid frogs with `Fejervaryan lines' on the ventral side of the body) frogs, distributed in South and SE Asia, using published and newly generated sequences of unidentified individuals from the northern Western Ghats. The results corroborate the presence of a larger fejervaryan clade with a sister relationship to a clade composed of Sphaerotheca. Two sister clades could be discerned within the lager fejervaryan clade. The unidentified individuals formed a monophyletic group and showed a strong support for a sister relationship with Minervarya sahyadris. The species was found to be highly divergent (16S rRNA-4% and tyr-1%) from its sister lineage Minervarya sahyadris, and the clade composed of these two lineages were found to be deeply nested within the larger clade of Fejervarya. Based on this, the genus Minervarya Dubois, Ohler and Biju, 2001 is synonymized under the genus Fejervarya Bolkay, 1915. The unidentified lineage is recognized, based on phylogenetic position, genetic divergence and morphological divergence, as a distinct species and named here as Fejervarya gomantaki sp. nov. The presence of rictal glands was observed to be a synapomorphic character shared by the nested clade members, Fejervarya sahyadris and Fejervarya gomantaki sp. nov. Based on the presence of rictal gland and small size, Minervarya chilapata, a species from a lowland region in the Eastern Himalayas, is synonymized under Fejervarya and evidence for morphological separation from the new species, Fejervarya gomantaki sp. nov. is provided. For the fejervaryan frogs, currently three generic names (Frost, 2015) are available for the two phylogenetic subclades; the genus Fejervarya Bolkay, 1915 for the species of fejervaryan frogs having distribution in the South East Asia; the genus Zakerana Howlader, 2011 for the species of fejervaryan frogs having distribution in the South Asia and the genus Minervarya Dubois, Ohler and Biju, 2001 nested within the `Zakerana clade'. In the phylogenetic analysis Minervarya sahyadris, the new species described herein as Fejervarya gomantaki sp. nov. are nested within the `Zakerana clade', if the `Zakerana clade' for the fejervaryan frogs having distribution in the South Asia is provided a generic status the nomen `Minervarya' should be considered as per the principle of priority of the ICZN Code. Taking into consideration the overlapping distribution ranges of members of the sister clades within the larger fejervaryan clade and the absence of distinct morphological characteristics, we also synonymize the genus Zakerana Howlader, 2011, a name assigned to one of the sister clades with members predominantly distributed in South Asia, under the genus Fejervarya Bolkay, 1915. We discuss the need for additional sampling to identify additional taxa and determine the geographical ranges of the members of the sister clades within Fejervarya to resolve taxonomy within this group.
Resumo:
The present immuno-diagnostic method using soluble antigens from whole cell lysate antigen for trypanosomosis have certain inherent problems like lack of standardized and reproducible antigens, as well as ethical issues due to in vivo production, that could be alleviated by in vitro production. In the present study we have identified heat shock protein 70 (HSP70) from T. evansi proteome. The nucleotide sequence of T. evansi HSP70 was 2116 bp, which encodes 690 amino acid residues. The phylogenetic analysis of T. evansi HSP70 showed that T. evansi occurred within Trypanosoma clade and is most closely related to T. brucei brucei and T. brucei gambiense, whereas T. congolense HSP70 laid in separate clade. The two partial HSP70 sequences (HSP-1 from N-terminal region and HSP-2 from C-terminal region) were expressed and evaluated as diagnostic antigens using experimentally infected equine serum samples. Both recombinant proteins detected antibody in immunoblot using serum samples from experimental infected donkeys with T. evansi. Recombinant HSP-2 showed comparable antibody response to Whole cell lysate (WCL) antigen in immunoblot and ELISA. The initial results indicated that HSP70 has potential to detect the T. evansi infection and needs further validation on large set of equine serum samples.
Resumo:
Despite more than 40 years of intense study, essential features of the silkmoth chorion (eggshell) are still not fully understood. To determine the precise structure of the chorion locus, we performed extensive EST analysis, constructed a bacterial artificial chromosome (BAC) contig, and obtained a continuous genomic sequence of 871,711 base pairs. We annotated 127 chorion genes in two segments interrupted by a 164 kb region with 5 non-chorion genes, orthologs of which were on chorion bearing scaffolds in 4 ditrysian families. Detailed transcriptome analysis revealed expression throughout choriogenesis of most chorion genes originally categorized as ``middle'', and evidence for diverse regulatory mechanisms including cis-elements, alternative splicing and promoter utilization, and antisense RNA. Phylogenetic analysis revealed multigene family associations and faster evolution of early chorion genes and transcriptionally active pseudogenes. Proteomics analysis identified 99 chorion proteins in the eggshell and micropyle localization of 1 early and 6 Hc chorion proteins.
Resumo:
Copper oxide (CuO) is one of the most important transition metal oxides due to its unique properties. It is used in various technological applications such as high critical temperature, superconductors, gas sensors, in photoconductive applications and so on. Recently, it has been used as an antimicrobial agent against various pathogenic bacteria. In the present investigation, we studied the structural and antidermatophytic properties of CuO nanoparticles (NPs) synthesized by a precipitation technique. Copper sulfate was used as a precursor and sodium hydroxide as a reducing agent. Scanning electron microscopy (SEM) showed flower-shaped CuO NPs and X-ray diffraction (XRD) pattern showed the crystalline nature of CuO NPs. These NPs were evaluated against two prevalent species of dermatophytes, i.e. Trichophyton rubrum and T. mentagrophytes by using the broth microdilution technique. Further, the NPs activity was also compared with synthetic sertaconazole. Although better antidermatophytic activity was exhibited with sertaconazole as compared to NPs, being synthetic, sertaconazole may not be preferred, as it shows different adverse effects. Trichophyton mentagrophytes is more susceptible to NPs than T. rubrum. A phylogenetic approach was applied for predicting differences in susceptibility of pathogens.
Resumo:
Brachysaura is a monotypic genus of agamid lizard found in the Indian subcontinent; the identity and systematic position of B. minor has been long debated, and it has at times been subsumed into Agama, Charasia and Laudakia, with some authors suggesting affinities to Calotes. We constructed nuclear and mitochondrial phylogenetic trees including Brachysaura and allied agamid genera to resolve its phylogenetic position. We also compared osteology and external morphology with the genera Agama, Calotes and Laudakia. Hemipenial morphology was compared with Calotes and some other agamids from South Asia. Both nuclear and mitochondrial phylogenies demonstrate that Brachysaura is nested within the widespread South and Southeast Asian genus Calotes, with which it also shares certain external morphological, osteological and hemipenial characters. Adaptations to ground dwelling in Brachysaura minor has resulted in unique modifications to its body plan, which is likely why generic allocation has been long confused. This study also highlights the need for an integrated systematic approach to resolve taxonomic ambiguity in Asian agamids.
Resumo:
A new bufonid amphibian, belonging to a new monotypic genus, is described from the Andaman Islands, in the Bay of Bengal, Republic of India, based on unique external morphological and skeletal characters which are compared with those of known Oriental and other relevant bufonid genera. Blythophryne gen. n. is distinguished from other bufonid genera by its small adult size (mean SVL 24.02 mm), the presence of six presacral vertebrae, an absence of coccygeal expansions, presence of an elongated pair of parotoid glands, expanded discs at digit tips and phytotelmonous tadpoles that lack oral denticles. The taxonomic and phylogenetic position of the new taxon (that we named as Blythophryne beryet gen. et sp. n.) was ascertained by comparing its 12S and 16S partial genes with those of Oriental and other relevant bufonid lineages. Resulting molecular phylogeny supports the erection of a novel monotypic genus for this lineage from the Andaman Islands of India.
Resumo:
The tribe Iphigenieae (Colchicaceace, Liliales) includes two genera, viz. Camptorrhiza and Iphigenia, which are distributed in Africa, India, and Australasia. Iphigenia is represented by 12 species, of which six occur in India while Camptorrhiza comprises one species each in Africa (C. strumosa) and India (C. indica). The genus Camptorrhiza possesses a knee-shaped tuber attached to the corms, filaments with a thick bulge in the middle and styles with single stigma. Iphigenia on the other hand lacks knee-shaped tuber, bears linear filaments and has styles with three stigmas. Camptorrhiza indica possesses ovoid corms, linear filaments and styles with a single stigma. These characters are intermediate between Iphigenia and Camptorrhiza and hence we studied the cytogenetics and phylogenetic placement of this species to ascertain its generic identity. Somatic chromosome count (2n = 22) and karyotypic features of C. indica are very similar to that of Iphigenia species. Molecular phylogenetic studies based on atpB-rbcL, rps16, trnL, and trnL-F regions showed that C. indica is nested within a lineage of Indian Iphigenia species. Thus, C. indica was reduced to a species of Iphigenia, i.e., I. ratnagirica. Camptorrhiza is now a monotypic genus restricted only to southern Africa. A key to the Indian Iphigenia species is provided. In addition, a new combination Wurmbea novae-zelandiae is proposed for Iphigenia novae-zelandiae.