197 resultados para Perte de charge
Resumo:
Doping dependent current-voltage (I-V) and capacitance-voltage (C-V) measurements were carried out on polypyrrole devices in metal-polymer-metal sandwich structure. Temperature dependent I-V measurements infer that space-charge limited conduction (SCLC) with exponential trap distribution is appropriate for the moderately doped samples, whereas trap-free SCLC is observed in lightly doped samples. Trap densities and energies are estimated, the effective mobility is calculated using the Poole-Frenkel model, and the mobility exhibits thermally activated behavior. Frequency dependent capacitance-voltage characteristics show a peak near zero bias voltage, which implies that these devices are symmetric with a negligible barrier height at the metal-polymer interface. Low frequency capacitance measurements have revealed a negative capacitance at higher voltages due to the processes associated with the injection and redistribution of space-charges. (C) 2010 American Institute of Physics.
Resumo:
The transmission electron microscopy images of in situ prepared multiwall carbon nanotubes (MWNTs)and polyaniline (PANI) composites show that nanotubes are well dispersed in aqueous medium, and the nanofibers of PANI facilitate intertube transport. Although low temperature transport indicates variable range hopping (VRH) mechanism, the dc and ac conductivity become temperature independent as the MWNT content increases. The onset frequency for the increase in conductivity is observed to be strongly dependent on the MWNT weight percent, and the ac conductivity can be scaled onto a master curve. The negative magnetoresistance is attributed to the forward interference scattering mechanism in VRH transport. (C) 2010 American.
Resumo:
The X-ray structure and electron density distribution of ethane-1,2-diol (ethylene glycol), obtained at a resolution extending to 1.00 Å−1 in sin θ/λ (data completion = 100% at 100 K) by in situ cryocrystallization technique is reported. The diol is in the gauche (g′Gt) conformation with the crystal structure stabilised by a network of inter-molecular hydrogen bonds. In addition to the well-recognized O–H···O hydrogen bonds there is topological evidence for C–H···O inter-molecular interactions. There is no experimental electron density based topological evidence for the occurrence of an intra-molecular hydrogen bond. The O···H spacing is not, vert, similar0.45 Å greater than in the gas-phase with an O–H···O angle close to 90°, calling into question the general assumption that the gauche conformation of ethane-1,2-diol is stabilised by the intra-molecular oxygen–hydrogen interaction.
Resumo:
A polymer containing electron-rich aromatic donors (1,5-dialkoxynaphthalene (DAN)) was coerced into a folded state by an external folding agent that contained an electron-deficient aromatic acceptor (pyromellitic diimide (PM)) unit. The donor-containing polymer was designed to carry a tertiary amine moiety in the linking segment, which served as an H-bonding site for reinforcing the interaction with the acceptor containing folding agent that also bore a carboxylic acid group. The H-bonding interaction of the carboxylic acid and the tertiary amine brings the PDI unit between two adjacent DAN units along the polymer backbone to induce charge-transfer (C-T) interactions, and this in turn causes the polymer chain to form a pleated structure. Evidence for the formation of such a pleated structure was obtained from NMR titration studies and also by monitoring the C-T band in their UV-visible spectra. By varying the length of the segment that links the PDI acceptor to the carboxylic acid group, we showed that the most effective folding agent was the one that had a single carbon spacer, as evident from the highest value of the association constant. Control experiments with propionic acid clearly demonstrated the importance of the additional C-T interactions for venerating the folded structures. Further, solution viscosity measurements in the presence of varying amounts of the folding agent revealed a gradual stiffening of the chain in the case of the PDI carrying carboxylic acid, whereas no such affect was seen in the case of simple propionic acid. These observations were supported by D FT calculations of the interactions of a dimeric model of the polymer with the various folding agents; here too the stability of the complex was seen to be highest in the case of the single carbon spacer.
Resumo:
Usually metallicity accompanies ferromagnetism. K2Cr8O16 is one of the less common examples of magnetic materials, exhibiting ferromagnetism in the insulating state. Analyzing the electronic and magnetic properties within first principles electronic structure calculations, we find that the doped electrons due to K induce a charge-ordered and insulating ground state and interestingly also introduce a ferromagnetic coupling between the Cr ions. The primary considerations driving the charge ordering are found to be electrostatic ones with the charge being localized on two Cr atoms that minimize the electrostatic energy. The structural distortion that accompanies the ordering gives rise to a rare example of a charge-order driven ferromagnetic insulator.
Resumo:
Charge-order driven magnetic ferroelectricity is shown to occur in several rare earth manganates of the general formula, Ln(1-x)A(x)MnO(3) (In = rare earth, A = alkaline earth). Charge-ordered manganates exhibit dielectric constant anomalies around the charge-ordering or the antiferromagnetic transition temperature. Magnetic fields have a marked effect on the dielectric properties of these compounds, indicating the presence of coupling between the magnetic and electrical order parameters. Magneto-dielectric properties are retained in small particles of the manganates. The observation of magneto-ferroelectricity in these manganates is in accordance with theoretical predictions.
Resumo:
Charge-order driven magnetic ferroelectricity is shown to occur in several rare earth manganates of the general formula, Ln(1-x)A(x)MnO(3) (In = rare earth, A = alkaline earth). Charge-ordered manganates exhibit dielectric constant anomalies around the charge-ordering or the antiferromagnetic transition temperature. Magnetic fields have a marked effect on the dielectric properties of these compounds, indicating the presence of coupling between the magnetic and electrical order parameters. Magneto-dielectric properties are retained in small particles of the manganates. The observation of magneto-ferroelectricity in these manganates is in accordance with theoretical predictions.
Resumo:
Lead acid batteries are used in hybrid vehicles and telecommunications power supply. For reliable operation of these systems, an indication of state of charge of battery is essential. To determine the state of charge of battery, current integration method combined with open circuit voltage, is being implemented. To reduce the error in the current integration method the dependence of available capacity as a function of discharge current is determined. The current integration method is modified to incorporate this factor. The experimental setup built to obtain the discharge characterstics of the battery is presented.
Resumo:
Nd0.5Ca0.5MnO3 nanoparticles (average diameter similar to 20 and 40 nm) are synthesized by the polymeric precursor sol-gel method and characterized by various physico-chemical techniques. Quite strikingly, in the 20 nm particles, the charge-ordered (CO) and the antiferromagnetic phases observed in the bulk below 250 K and 160 K, respectively, are completely absent. Instead, a ferromagnetic (FM) transition is observed at 95 K followed by an insulator-to-metal transition at 75 K. The 40 nm particles show a residual CO phase but a transition to the FM state also occurs, at a slightly higher temperature of 110 K.
Resumo:
We report magnetization and magnetoresistance studies of the geometrically frustrated spinel compound LiMn2O4 near its charge ordering temperature. The effect of a 7 T magnetic field is to very slightly shift the transition in the resistivity to lower temperatures resulting in large negative magnetoresistance with significant hysteresis. This hysteresis is not reflected in the magnetization. These observations are compared with what is found in the colossal magnetoresistance and charge ordering perovskite manganese oxides. The manner in which geometric frustration influences the coupling of charge and spin degrees of freedom is examined.
Resumo:
Charge density analysis from both experimental and theoretical points of view on two molecular complexes: one is formed between nicotinamide and salicylic acid, and the other formed between nicotinamide and oxalic acid brings out the quantitative topological features to distinguish a cocrystal from a salt.
Resumo:
We report the first electron paramagnetic resonance studies of single crystals and powders of Pr0.6Ca0.4MnO3 in the 300-4.2 K range, covering the charge-ordering transition (Tco) at ~240 K and antiferromagnetic transition (TN) at ~170 K. The asymmetry parameter for the Dysonian single-crystal spectra shows an anomalous increase at Tco. Below Tco the g-value increases continuously, suggesting a gradual strengthening of the orbital ordering. The linewidth undergoes a sudden increase at Tco and continues to increase down to TN. The intensity increases as the temperature is decreased until Tco is reached, due to the renormalization of the magnetic susceptibility arising from the build-up of ferromagnetic correlations.
Resumo:
Detailed investigation of the charge density distribution in concomitant polymorphs of 3-acetylcoumarin in terms of experimental and theoretical densities shows significant differences in the intermolecular features when analyzed based on the topological properties via the quantum theory of atoms in molecules. The two forms, triclinic and monoclinic (Form A and Form B), pack in the crystal lattice via weak C-H---O and C-H---pi interactions. Form A results in a head-to-head molecular stack, while Form B generates a head-to-tail stack. Form A crystallizes in PI (Z' = 2) and Form B crystallizes in P2(1)/n (Z = 1). The electron density maps of the polymorphs demonstrate the differences in the nature of the charge density distribution in general. The charges derived from experimental and theoretical analysis show significant differences with respect to the polymorphic forms. The molecular dipole moments differ significantly for the two forms. The lattice energies evaluated at the HF and DFT (B3LYP) methods with 6-31G** basis set for the two forms clearly suggest that Form A is the thermodynamically stable form as compared to Form B. Mapping of electrostatic potential over the molecular surface shows dominant variations in the electronegative region, which bring out the differences between the two forms.