85 resultados para Perception-based Analysis
Resumo:
We present a sound and complete decision procedure for the bounded process cryptographic protocol insecurity problem, based on the notion of normal proofs [2] and classical unification. We also show a result about the existence of attacks with “high” normal cuts. Our proof of correctness provides an alternate proof and new insights into the fundamental result of Rusinowitch and Turuani [9] for the same setting.
Resumo:
We address the problem of estimating the fundamental frequency of voiced speech. We present a novel solution motivated by the importance of amplitude modulation in sound processing and speech perception. The new algorithm is based on a cumulative spectrum computed from the temporal envelope of various subbands. We provide theoretical analysis to derive the new pitch estimator based on the temporal envelope of the bandpass speech signal. We report extensive experimental performance for synthetic as well as natural vowels for both realworld noisy and noise-free data. Experimental results show that the new technique performs accurate pitch estimation and is robust to noise. We also show that the technique is superior to the autocorrelation technique for pitch estimation.
Resumo:
Sensitivity analysis is an important aspect to be looked into while designing lab-on-a-chip systems. In this paper we will be showing with appropriate design that the best sensitivity of the fluorescence biosensor is achieved for an optimal width of fluidic gap, corresponding to a particular mode spot size. We will be also showing that the sensitivity of the biosensor is affected by efficiency of light coupling, which is influenced by changes in the width of fluidic gap, refractive index of the fluid and higher order modes.
Resumo:
This article presents the buckling analysis of orthotropic nanoplates such as graphene using the two-variable refined plate theory and nonlocal small-scale effects. The two-variable refined plate theory takes account of transverse shear effects and parabolic distribution of the transverse shear strains through the thickness of the plate, hence it is unnecessary to use shear correction factors. Nonlocal governing equations of motion for the monolayer graphene are derived from the principle of virtual displacements. The closed-form solution for buckling load of a simply supported rectangular orthotropic nanoplate subjected to in-plane loading has been obtained by using the Navier's method. Numerical results obtained by the present theory are compared with first-order shear deformation theory for various shear correction factors. It has been proven that the nondimensional buckling load of the orthotropic nanoplate is always smaller than that of the isotropic nanoplate. It is also shown that small-scale effects contribute significantly to the mechanical behavior of orthotropic graphene sheets and cannot be neglected. Further, buckling load decreases with the increase of the nonlocal scale parameter value. The effects of the mode number, compression ratio and aspect ratio on the buckling load of the orthotropic nanoplate are also captured and discussed in detail. The results presented in this work may provide useful guidance for design and development of orthotropic graphene based nanodevices that make use of the buckling properties of orthotropic nanoplates.
Resumo:
This paper describes the different types of space vector based bus clamped PWM algorithms for three level inverters. A novel bus clamp PWM algorithm for low modulation indices region is also presented. The principles and switching sequences of all the types of bus clamped algorithms for high switching frequency are presented. Synchronized version of the PWM sequences for high power applications where switching frequency is low is also presented. The implementation details on DSP based digital controller and experimental results are presented. The THD of the output waveforms is studied for the entire operating region and is compared with the conventional space vector PWM technique. The bus clamped techniques can be used to reduce the switching losses or to improve the output voltage quality or both.. Different issues dominate depending on the type of application and power rating of the inverters. The results presented in this paper can be used for judicious use of the PWM techniques, which result in improved system efficiency and performance.
Resumo:
A detailed study on the removal of pollutants (NOx, aldehydes and CO) from the exhaust of a stationary diesel engine is carried out using barrier discharge hybrid plasma techniques. The objective of the study is to make a comparative analysis. For this purpose, the exhaust treatment was carried out in two stages. In the first stage, the exhaust was treated with plasma process and plasma-adsorbent hybrid process. The effectiveness of the two processes with regard to NOx removal and by-product reduction was discussed. In the second stage, the exhaust was treated by plasma and plasma-catalyst hybrid process. The effectiveness of the two processes with regard to pollutants (NOx, CO) removal and by-product reduction was analyzed. Finally, a comprehensive comparison of different techniques has been made and feasible plasma based hybrid techniques for stationary and non-stationary engine exhaust treatments were proposed.
Resumo:
This paper presents the design and performance analysis of a detector based on suprathreshold stochastic resonance (SSR) for the detection of deterministic signals in heavy-tailed non-Gaussian noise. The detector consists of a matched filter preceded by an SSR system which acts as a preprocessor. The SSR system is composed of an array of 2-level quantizers with independent and identically distributed (i.i.d) noise added to the input of each quantizer. The standard deviation sigma of quantizer noise is chosen to maximize the detection probability for a given false alarm probability. In the case of a weak signal, the optimum sigma also minimizes the mean-square difference between the output of the quantizer array and the output of the nonlinear transformation of the locally optimum detector. The optimum sigma depends only on the probability density functions (pdfs) of input noise and quantizer noise for weak signals, and also on the signal amplitude and the false alarm probability for non-weak signals. Improvement in detector performance stems primarily from quantization and to a lesser extent from the optimization of quantizer noise. For most input noise pdfs, the performance of the SSR detector is very close to that of the optimum detector. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
This paper studies the effect of longitudinal magnetic field on ultrasonic vibration in single walled carbon nanotubes (CNTs) based on nonlocal continuum medium theory. Governing partial differential equations of CNTs are derived by considering the Lorentz magnetic forces applied on CNTs induced by a longitudinal magnetic field through Maxwell equations. The vibration characteristics of CNTs under a longitudinal magnetic field are obtained by solving the governing equations via wave propagation approach. The effects of longitudinal magnetic field on vibration of CNTs are discussed through numerical experiments. The present analysis show that vibration frequencies of CNTs drops dramatically in the presence of the magnetic field for various circumferential wavenumbers. Such effect is also observed for various boundary conditions of the CNT. New features for the effect of longitudinal magnetic field on ultrasonic vibration of CNTs, presented in this paper are useful in the design of nano-drive device, nano-oscillator and actuators and nano-electron technology, where carbon nanotubes act as basic elements.
Resumo:
Causal relationships existing between observed levels of groundwater in a semi-arid sub-basin of the Kabini River basin (Karnataka state, India) are investigated in this study. A Vector Auto Regressive model is used for this purpose. Its structure is built on an upstream/downstream interaction network based on observed hydro-physical properties. Exogenous climatic forcing is used as an input based on cumulated rainfall departure. Optimal models are obtained thanks to a trial approach and are used as a proxy of the dynamics to derive causal networks. It appears to be an interesting tool for analysing the causal relationships existing inside the basin. The causal network reveals 3 main regions: the Northeastern part of the Gundal basin is closely coupled to the outlet dynamics. The Northwestern part is mainly controlled by the climatic forcing and only marginally linked to the outlet dynamic. Finally, the upper part of the basin plays as a forcing rather than a coupling with the lower part of the basin allowing for a separate analysis of this local behaviour. The analysis also reveals differential time scales at work inside the basin when comparing upstream oriented with downstream oriented causalities. In the upper part of the basin, time delays are close to 2 months in the upward direction and lower than 1 month in the downward direction. These time scales are likely to be good indicators of the hydraulic response time of the basin which is a parameter usually difficult to estimate practically. This suggests that, at the sub-basin scale, intra-annual time scales would be more relevant scales for analysing or modelling tropical basin dynamics in hard rock (granitic and gneissic) aquifers ubiquitous in south India. (c) 2012 Elsevier B.V. All rights reserved.
Resumo:
This paper presents the thermal vibration analysis of orthotropic nanoplates such as graphene, using the two variable refined plate theory and nonlocal continuum mechanics for small scale effects. The nanoplate is modeled based on two variable refined plate theory and the axial stress caused by the thermal effects is also considered. The two variable refined plate theory takes account of transverse shear effects and parabolic distribution of the transverse shear strains through the thickness of the plate, hence it is unnecessary to use shear correction factors. Nonlocal governing equations of motion for the nanoplate are derived from the principle of virtual displacements. The closed form solution for thermal-vibration frequencies of a simply supported rectangular nanoplate has been obtained by using Navier's method of solution. Numerical results obtained by the present theory are compared with available solutions in the literature and the molecular dynamics results. The influences of the small scale coefficient, the room or low temperature, the high temparature, the half wave number and the aspect ratio of nanoplate on the natural frequencies are considered and discussed in detail. It can be concluded that the present theory, which does not require shear correction factor, is not only simple but also comparable to the first-order and higher order shear deformation theory. The present analysis results can be used for the design of the next generation of nanodevices that make use of the thermal vibration properties of the nanoplates. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Clock synchronisation is an important requirement for various applications in wireless sensor networks (WSNs). Most of the existing clock synchronisation protocols for WSNs use some hierarchical structure that introduces an extra overhead due to the dynamic nature of WSNs. Besides, it is difficult to integrate these clock synchronisation protocols with sleep scheduling scheme, which is a major technique to conserve energy. In this paper, we propose a fully distributed peer-to-peer based clock synchronisation protocol, named Distributed Clock Synchronisation Protocol (DCSP), using a novel technique of pullback for complete sensor networks. The pullback technique ensures that synchronisation phases of any pair of clocks always overlap. We have derived an exact expression for a bound on maximum synchronisation error in the DCSP protocol, and simulation study verifies that it is indeed less than the computed upper bound. Experimental study using a few TelosB motes also verifies that the pullback occurs as predicted.
Resumo:
This paper analyzes the error exponents in Bayesian decentralized spectrum sensing, i.e., the detection of occupancy of the primary spectrum by a cognitive radio, with probability of error as the performance metric. At the individual sensors, the error exponents of a Central Limit Theorem (CLT) based detection scheme are analyzed. At the fusion center, a K-out-of-N rule is employed to arrive at the overall decision. It is shown that, in the presence of fading, for a fixed number of sensors, the error exponents with respect to the number of observations at both the individual sensors as well as at the fusion center are zero. This motivates the development of the error exponent with a certain probability as a novel metric that can be used to compare different detection schemes in the presence of fading. The metric is useful, for example, in answering the question of whether to sense for a pilot tone in a narrow band (and suffer Rayleigh fading) or to sense the entire wide-band signal (and suffer log-normal shadowing), in terms of the error exponent performance. The error exponents with a certain probability at both the individual sensors and at the fusion center are derived, with both Rayleigh as well as log-normal shadow fading. Numerical results are used to illustrate and provide a visual feel for the theoretical expressions obtained.
Resumo:
Ubiquitous Computing is an emerging paradigm which facilitates user to access preferred services, wherever they are, whenever they want, and the way they need, with zero administration. While moving from one place to another the user does not need to specify and configure their surrounding environment, the system initiates necessary adaptation by itself to cope up with the changing environment. In this paper we propose a system to provide context-aware ubiquitous multimedia services, without user’s intervention. We analyze the context of the user based on weights, identify the UMMS (Ubiquitous Multimedia Service) based on the collected context information and user profile, search for the optimal server to provide the required service, then adapts the service according to user’s local environment and preferences, etc. The experiment conducted several times with different context parameters, their weights and various preferences for a user. The results are quite encouraging.
Resumo:
This paper discusses an approach for river mapping and flood evaluation based on multi-temporal time-series analysis of satellite images utilizing pixel spectral information for image clustering and region based segmentation for extracting water covered regions. MODIS satellite images are analyzed at two stages: before flood and during flood. Multi-temporal MODIS images are processed in two steps. In the first step, clustering algorithms such as Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) are used to distinguish the water regions from the non-water based on spectral information. These algorithms are chosen since they are quite efficient in solving multi-modal optimization problems. These classified images are then segmented using spatial features of the water region to extract the river. From the results obtained, we evaluate the performance of the methods and conclude that incorporating region based image segmentation along with clustering algorithms provides accurate and reliable approach for the extraction of water covered region.