181 resultados para Pavement Edges.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The local Fe ferromagnetic (FM) moment at the grain boundaries of a ceramic sample of Ca2FeReO6 double perovskite was investigated by means of x-ray magnetic circular dichroism spectroscopy at the Fe L-2,L-3 edges and compared to the overall bulk magnetization. We found that, at the grain boundaries, the Fe FM moments at H=5 T are much smaller than expected and that the MxH curve is harder than in the bulk magnetization. These results suggest a larger degree of Fe/Re antisite disorder at the grain boundaries of this sample, shedding light into the intriguing nonmetallic resistivity behavior despite the reported presence of free carriers. (c) 2007 American Institute of Physics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We consider the problem of computing an approximate minimum cycle basis of an undirected edge-weighted graph G with m edges and n vertices; the extension to directed graphs is also discussed. In this problem, a {0,1} incidence vector is associated with each cycle and the vector space over F-2 generated by these vectors is the cycle space of G. A set of cycles is called a cycle basis of G if it forms a basis for its cycle space. A cycle basis where the sum of the weights of the cycles is minimum is called a minimum cycle basis of G. Cycle bases of low weight are useful in a number of contexts, e.g. the analysis of electrical networks, structural engineering, chemistry, and surface reconstruction. We present two new algorithms to compute an approximate minimum cycle basis. For any integer k >= 1, we give (2k - 1)-approximation algorithms with expected running time 0(kmn(1+2/k) + mn((1+1/k)(omega-1))) and deterministic running time 0(n(3+2/k)), respectively. Here omega is the best exponent of matrix multiplication. It is presently known that omega < 2.376. Both algorithms are o(m(omega)) for dense graphs. This is the first time that any algorithm which computes sparse cycle bases with a guarantee drops below the Theta(m(omega)) bound. We also present a 2-approximation algorithm with O(m(omega) root n log n) expected running time, a linear time 2-approximation algorithm for planar graphs and an O(n(3)) time 2.42-approximation algorithm for the complete Euclidean graph in the plane.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Frequency multiplication (FM) can be used to design low power frequency synthesizers. This is achieved by running the VCO at a much reduced frequency, while employing a power efficient frequency multiplier, and also thereby eliminating the first few dividers. Quadrature signals can be generated by frequency- multiplying low frequency I/Q signals, however this also multiplies the quadrature error of these signals. Another way is generating additional edges from the low-frequency oscillator (LFO) and develop a quadrature FM. This makes the I-Q precision heavily dependent on process mismatches in the ring oscillator. In this paper we examine the use of fewer edges from LFO and a single stage polyphase filter to generate approximate quadrature signals, which is then followed by an injection-locked quadrature VCO to generate high- precision I/Q signals. Simulation comparisons with the existing approach shows that the proposed method offers very good phase accuracy of 0.5deg with only a modest increase in power dissipation for 2.4 GHz IEEE 802.15.4 standard using UMC 0.13 mum RFCMOS technology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We consider a multicommodity flow problem on a complete graph whose edges have random, independent, and identically distributed capacities. We show that, as the number of nodes tends to infinity, the maximumutility, given by the average of a concave function of each commodity How, has an almost-sure limit. Furthermore, the asymptotically optimal flow uses only direct and two-hop paths, and can be obtained in a distributed manner.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sr2FeMoO6 double perovskits display low field MR at a relatively high temperature and unusual ferromagnetic properties. These compounds depicts metal to insulator transition increasing x above x(c) similar to 0.25. A comparative analysis of the near edge regions (XANES) suggests that iron is Fe3+ in the metallic range. Checking the end compounds, we found that the doped samples can be viewn as inhomogeneous distributions of the end compounds. This could help to distinguish between the two scenarios proposed to explain the metal to insulator transition. Moreover, the local atomic structure of Sr2FeMoxW1-xO6 as a function of composition (0 <= x <= 1) has been investigated by Extended X-ray absorption spectroscopy (EXAFS) a the Fe, Mo, Sr K-edges andW L-III-edge.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The stress concentration that occurs when load is diffused from a constant stress member into thin sheet is an important problem in the design of light weight structures. By using solutions in biharmonic polar-trigonometric series, the stress concentration can be effectively isolated so that highly accurate information necessary for design can be obtained. A method of analysis yielding high accuracy with limited effort is presented for rectangular panels with transverse edges free or supported by inextensional end ribs. Numerical data are given for panels with length twice the width.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The boxicity of a graph G, denoted box(G), is the least integer d such that G is the intersection graph of a family of d-dimensional (axis-parallel) boxes. The cubicity, denoted cub(G), is the least dsuch that G is the intersection graph of a family of d-dimensional unit cubes. An independent set of three vertices is an asteroidal triple if any two are joined by a path avoiding the neighbourhood of the third. A graph is asteroidal triple free (AT-free) if it has no asteroidal triple. The claw number psi(G) is the number of edges in the largest star that is an induced subgraph of G. For an AT-free graph G with chromatic number chi(G) and claw number psi(G), we show that box(G) <= chi(C) and that this bound is sharp. We also show that cub(G) <= box(G)([log(2) psi(G)] + 2) <= chi(G)([log(2) psi(G)] + 2). If G is an AT-free graph having girth at least 5, then box(G) <= 2, and therefore cub(G) <= 2 [log(2) psi(G)] + 4. (c) 2010 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Approximate solutions for the non-linear bending of thin rectangular plates are presented considering large deflections for various boundary conditions. In the case of stress-free edges, solutions are given for von Kármán's equations in terms of the stress function and the deflection of the plate. In the case of immovable edges, equations are constructed in terms of the three displacements and these are solved. The solution is given by using double series consisting of the appropriate Beam Functions which satisfy the boundary conditions. The differential equations are satisfied by using the orthogonality properties of the series. Numerical results for square plates with uniform lateral load indicate good convergence of the series solution presented here.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A method is presented for obtaining lower bound on the carrying capacity of reinforced concrete foundation slab-structures subject to non-uniform contact pressure distributions. Functional approach suggested by Vallance for simply supported square slabs subject to uniform pressure distribution has been extended to simply supported rectangular slabs subject to symmetrical non-uniform pressure distributions. Radial solutions, ideally suited for rotationally symmetric problems, are shown to be adoptable for regular polygonal slabs subject to contact pressure paraboloids with constant edge pressures. The functional approach has been shown to be well suited even when the pressure is varying along the edges.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using square yield criterion and the associated flow rule, complete limit analysis solutions are presented for the collapse load of annular slabs with inner and outer edges either simply supported or clamped. For the simply supported case, a comparison is made with a previously published solution employing Tresca's yield criterion and its associated flow rules. That the collapse load obtained from a complete solution is in fact very close to that obtained from a solution which is only kinematically admissible is demonstrated in the clamped case.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Stone-Wales (SW) defects, analogous to dislocations in crystals, play an important role in mechanical behavior of sp(2)-bonded carbon based materials. Here, we show using first-principles calculations that a marked anisotropy in the interaction among the SW defects has interesting consequences when such defects are present near the edges of a graphene nanoribbon: depending on their orientation with respect to edge, they result in compressive or tensile stress, and the former is responsible to depression or warping of the graphene nanoribbon. Such warping results in delocalization of electrons in the defect states.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We consider a variant of the popular matching problem here. The input instance is a bipartite graph $G=(\mathcal{A}\cup\mathcal{P},E)$, where vertices in $\mathcal{A}$ are called applicants and vertices in $\mathcal{P}$ are called posts. Each applicant ranks a subset of posts in an order of preference, possibly involving ties. A matching $M$ is popular if there is no other matching $M'$ such that the number of applicants who prefer their partners in $M'$ to $M$ exceeds the number of applicants who prefer their partners in $M$ to $M'$. However, the “more popular than” relation is not transitive; hence this relation is not a partial order, and thus there need not be a maximal element here. Indeed, there are simple instances that do not admit popular matchings. The questions of whether an input instance $G$ admits a popular matching and how to compute one if it exists were studied earlier by Abraham et al. Here we study reachability questions among matchings in $G$, assuming that $G=(\mathcal{A}\cup\mathcal{P},E)$ admits a popular matching. A matching $M_k$ is reachable from $M_0$ if there is a sequence of matchings $\langle M_0,M_1,\dots,M_k\rangle$ such that each matching is more popular than its predecessor. Such a sequence is called a length-$k$ voting path from $M_0$ to $M_k$. We show an interesting property of reachability among matchings in $G$: there is always a voting path of length at most 2 from any matching to some popular matching. Given a bipartite graph $G=(\mathcal{A}\cup\mathcal{P},E)$ with $n$ vertices and $m$ edges and any matching $M_0$ in $G$, we give an $O(m\sqrt{n})$ algorithm to compute a shortest-length voting path from $M_0$ to a popular matching; when preference lists are strictly ordered, we have an $O(m+n)$ algorithm. This problem has applications in dynamic matching markets, where applicants and posts can enter and leave the market, and applicants can also change their preferences arbitrarily. After any change, the current matching may no longer be popular, in which case we are required to update it. However, our model demands that we switch from one matching to another only if there is consensus among the applicants to agree to the switch. Hence we need to update via a voting path that ends in a popular matching. Thus our algorithm has applications here.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Denoising of images in compressed wavelet domain has potential application in transmission technology such as mobile communication. In this paper, we present a new image denoising scheme based on restoration of bit-planes of wavelet coefficients in compressed domain. It exploits the fundamental property of wavelet transform - its ability to analyze the image at different resolution levels and the edge information associated with each band. The proposed scheme relies on the fact that noise commonly manifests itself as a fine-grained structure in image and wavelet transform allows the restoration strategy to adapt itself according to directional features of edges. The proposed approach shows promising results when compared with conventional unrestored scheme, in context of error reduction and has capability to adapt to situations where noise level in the image varies. The applicability of the proposed approach has implications in restoration of images due to noisy channels. This scheme, in addition, to being very flexible, tries to retain all the features, including edges of the image. The proposed scheme is computationally efficient.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The neural network finds its application in many image denoising applications because of its inherent characteristics such as nonlinear mapping and self-adaptiveness. The design of filters largely depends on the a-priori knowledge about the type of noise. Due to this, standard filters are application and image specific. Widely used filtering algorithms reduce noisy artifacts by smoothing. However, this operation normally results in smoothing of the edges as well. On the other hand, sharpening filters enhance the high frequency details making the image non-smooth. An integrated general approach to design a finite impulse response filter based on principal component neural network (PCNN) is proposed in this study for image filtering, optimized in the sense of visual inspection and error metric. This algorithm exploits the inter-pixel correlation by iteratively updating the filter coefficients using PCNN. This algorithm performs optimal smoothing of the noisy image by preserving high and low frequency features. Evaluation results show that the proposed filter is robust under various noise distributions. Further, the number of unknown parameters is very few and most of these parameters are adaptively obtained from the processed image.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Denoising of medical images in wavelet domain has potential application in transmission technologies such as teleradiology. This technique becomes all the more attractive when we consider the progressive transmission in a teleradiology system. The transmitted images are corrupted mainly due to noisy channels. In this paper, we present a new real time image denoising scheme based on limited restoration of bit-planes of wavelet coefficients. The proposed scheme exploits the fundamental property of wavelet transform - its ability to analyze the image at different resolution levels and the edge information associated with each sub-band. The desired bit-rate control is achieved by applying the restoration on a limited number of bit-planes subject to the optimal smoothing. The proposed method adapts itself to the preference of the medical expert; a single parameter can be used to balance the preservation of (expert-dependent) relevant details against the degree of noise reduction. The proposed scheme relies on the fact that noise commonly manifests itself as a fine-grained structure in image and wavelet transform allows the restoration strategy to adapt itself according to directional features of edges. The proposed approach shows promising results when compared with unrestored case, in context of error reduction. It also has capability to adapt to situations where noise level in the image varies and with the changing requirements of medical-experts. The applicability of the proposed approach has implications in restoration of medical images in teleradiology systems. The proposed scheme is computationally efficient.