107 resultados para Paris equations


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The shock manifold equation is a first order nonlinear partial differential equation, which describes the kinematics of a shockfront in an ideal gas with constant specific heats. However, it was found that there was more than one of these shock manifold equations, and the shock surface could be embedded in a one parameter family of surfaces, obtained as a solution of any of these shock manifold equations. Associated with each shock manifold equation is a set of characteristic curves called lsquoshock raysrsquo. This paper investigates the nature of various associated shock ray equations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We offer a technique, motivated by feedback control and specifically sliding mode control, for the simulation of differential-algebraic equations (DAEs) that describe common engineering systems such as constrained multibody mechanical structures and electric networks. Our algorithm exploits the basic results from sliding mode control theory to establish a simulation environment that then requires only the most primitive of numerical solvers. We circumvent the most important requisite for the conventionalsimulation of DAEs: the calculation of a set of consistent initial conditions. Our algorithm, which relies on the enforcement and occurrence of sliding mode, will ensure that the algebraic equation is satisfied by the dynamic system even for inconsistent initial conditions and for all time thereafter. [DOI:10.1115/1.4001904]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It was proposed earlier [P. L. Sachdev, K. R. C. Nair, and V. G. Tikekar, J. Math. Phys. 27, 1506 (1986); P. L. Sachdev and K. R. C. Nair, ibid. 28, 977 (1987)] that the Euler–Painlevé equations  y(d2y/dη2)+a(dy/dη)2 +f(η)y(dy/dη)+g(η)y2+b(dy/dη) +c=0 represent generalized Burgers equations (GBE’s) in the same way as Painlevé equations represent the Korteweg–de Vries type of equations. The earlier studies were carried out in the context of GBE’s with damping and those with spherical and cylindrical symmetry. In the present paper, GBE’s with variable coefficients of viscosity and those with inhomogeneous terms are considered for their possible connection to Euler–Painlevé equations. It is found that the Euler–Painlevé equation, which represents the GBE ut+uβux=(δ/2)g(t)uxx, g(t)=(1+t)n, β>0, has solutions, which either decay or oscillate at η=±∞, only when −1equations in Paper II. Thus the parametric value β=βn seems to bifurcate the families of solutions, which remain bounded at η=±∞. Other GBE’s considered here are also found to be reducible to Euler–Painlevé equations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A modified set of governing equations for gas-particle flows in nozzles is suggested to include the inertial forces acting on the particle phase. The problem of gas-particle flow through a nozzle is solved using a first order finite difference scheme. A suitable stability condition for the numerical scheme for gas-particle flows is defined. Results obtained from the present set of equations are compared with those of the previous set of equations. It is also found that present set of equations give results which are in good agreement with the experimental observation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An algorithm that uses integer arithmetic is suggested. It transforms anm ×n matrix to a diagonal form (of the structure of Smith Normal Form). Then it computes a reflexive generalized inverse of the matrix exactly and hence solves a system of linear equations error-free.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we give a generalized predictor-corrector algorithm for solving ordinary differential equations with specified initial values. The method uses multiple correction steps which can be carried out in parallel with a prediction step. The proposed method gives a larger stability interval compared to the existing parallel predictor-corrector methods. A method has been suggested to implement the algorithm in multiple processor systems with efficient utilization of all the processors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Cole-Hopf transformation has been generalized to generate a large class of nonlinear parabolic and hyperbolic equations which are exactly linearizable. These include model equations of exchange processes and turbulence. The methods to solve the corresponding linear equations have also been indicated.La transformation de Cole et de Hopf a été généralisée en vue d'engendrer une classe d'équations nonlinéaires paraboliques et hyperboliques qui peuvent être rendues linéaires de façon exacte. Elles comprennent des équations modèles de procédés d'échange et de turbulence. Les méthodes pour résoudre les équations linéaires correspondantes ont également été indiquées.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A method to obtain a nonnegative integral solution of a system of linear equations, if such a solution exists is given. The method writes linear equations as an integer programming problem and then solves the problem using a combination of artificial basis technique and a method of integer forms.