215 resultados para Parallel plates
Resumo:
Abstract is not available.
Resumo:
The stability characteristics of parallel magnetic fields when fluid motions are present along the lines of force is studied. The stability criterion for both symmetric (m=0) and asymmetric (m=1) modes are discussed and the results obtained by Trehan and Singh (1978) are amended in the present study. The results obtained for the cylindrical geometry are shown to play an important role forka<4, wherek is the wave number,a is the radius of the cylinder, compared to the results obtained by Geronicolas (1977) for the slab geometry.
Resumo:
Under certain specific assumption it has been observed that the basic equations of magneto-elasticity in the case of plane deformation lead to a biharmonic equation, as in the case of the classical plane theory of elasticity. The method of solving boundary value problems has been properly modified and a unified approach in solving such problems has been suggested with special reference to problems relating thin infinite plates with a hole. Closed form expressions have been obtained for the stresses due to a uniform magnetic field present in the plane of deformation of a thin infinite conducting plate with a circular hole, the plate being deformed by a tension acting parallel to the direction of the magnetic field.
Resumo:
Novel Biginelli dihydropyrimidines of biological interest were prepared using p-toluene sulphonic acid as an efficient catalyst. All the thirty-two synthesised dihydropyrimidines were evaluated for their in vitro antioxidant activity using DPPH method. Only, compounds 28 and 29 exhibited reasonably good antioxidant activity. Furthermore, the synthesised Biginelli compounds were subjected for their in vitro anticancer activity against MCF-7 human breast cancer cells. The title compounds were tested at the concentration of 10 μg. Compounds exhibited activity ranging from weak to moderate and, from moderate to high in terms of percentage cytotoxicity. Among them, compounds 10 and 11 exhibited significant anticancer activity. In order to elucidate the three-dimensional structure–activity relationships (3D QSAR) towards their anticancer activity, we subjected them for comparative molecular similarity indices analysis (CoMSIA). Illustration regarding their synthesis, analysis, antioxidant activity, anticancer activity and 3D QSAR study is described.
Resumo:
The “partition method” or “sub-domain method” consists of expressing the solution of a governing differential equation, partial or ordinary, in terms of functions which satisfy the boundary conditions and setting to zero the error in the differential equation integrated over each of the sub-domains into which the given domain is partitioned. In this paper, the use of this method in eigenvalue problems with particular reference to vibration of plates is investigated. The deflection of the plate is expressed in terms of polynomials satisfying the boundary conditions completely. Setting the integrated error in each of the subdomains to zero results in a set of simultaneous, linear, homogeneous, algebraic equations in the undetermined coefficients of the deflection series. The algebraic eigenvalue problem is then solved for eigenvalues and eigenvectors. Convergence is examined in a few typical cases and is found to be satisfactory. The results obtained are compared with existing results based on other methods and are found to be in very good agreement.
Resumo:
The simply supported rhombic plate under transverse load has received extensive attention from elasticians, applied mathematicians and engineers. All known solutions are based on approximate procedures. Now, an exact solution in a fast converging explicit series form is derived for this problem, by applying Stevenson's tentative approach with complex variables. Numerical values for the central deflexion and moments are obtained for various corner angles. The present solution provides a basis for assessing the accuracy of approximate methods for analysing problems of skew plates or domains.
Resumo:
The classical Rayleigh-Ritz method with simple polynomials as admissible functions has been used for obtaining natural frequencies of transversely vibrating polar orthotropic annular plates. The method in conjunction with transformations introduced in the analysis has been found to be quite effective, particularly for large hole sizes. Estimates of natural frequencies corresponding to modes with one as well as two nodal diameters are obtained for the nine combinations of clamped, simply supported and free edge conditions and for various values of rigidity ratio and hole sizes. Based on the variation of eigenvalue parameter with rigidity ratio, the frequencies of these modes as well as those of axisymmetric modes have been expressed by means of simple formulae in terms of rigidity ratio and the frequencies of corresponding modes in the isotropic case. These formulae have been used in determining the fundamental frequencies of orthotropic plates.
Resumo:
The classical Rayleigh-Ritz method in conjunction with suitable co-ordinate transformations is found to be effective for accurate estimation of natural frequencies of circumferentially truncated circular sector plates with simply supported straight edges. Numerical results are obtained for all the nine combinations of clamped, simply supported and free boundary conditions at the circular edges and presented in the form of graphs. The analysis confirms an earlier observation that the plate behaves like a long rectangular strip as the width of the plate in the radial direction becomes small.
Resumo:
A method based on an assumption that the radial bending moment is zero at a nodal circle is shown to yield accurate estimates of natural frequencies corresponding to higher modes of transversely vibrating polar orthotropic annular plates for various combinations of clamped, simply supported and free edge conditions. This method is found to be convenient for the determination of locations of nodal circles as well. Numerical investigations revealed that for small holes, nodal circles tend to move towards the outer edge with increasing number of nodal diameters. For large holes, it has been shown that the plate behaves like a long rectangular strip.
Resumo:
Vibration problem of generally orthotropic plates with particular attention to plates of skew geometry is studied. The formulation is based on orthotropic plate theory with arbitrary orientation of the principal axes of orthotropy. The boundary conditions considered are combinations of simply supported, clamped, and free-edge conditions. Approximate solution for frequencies and modes is obtained by the Ritz method using products of appropriate beam characteristic functions as admissible functions. The variation of frequencies and modes with orientation of the axes of orthotropy is examined for different skew angles and boundary conditions. Features such as "crossings" and "quasi-degeneracies" of the frequency curves are found to occur with variation of the orientation of the axes of orthotropy for a given geometry of the skew plate. It is also found that for each combination of skew angle and side ratio, a particular orientation of the axes gives the highest value for the fundamental frequency of the plate.
Resumo:
The vibration problems of skew plates with different edge conditions involving simple support and clamping have been considered by using the variational method of Ritz, a double series of beam characteristic functions being employed appropriate to the combination of the edge conditions. Natural frequencies and modes of vibration have been obtained for different combinations of side ratio and skew angle. These detailed studies reveal several interesting features concerning the frequency curves and nodal patterns. The results presented should, in addition, be of considerable value and practical significance in design applications.
Resumo:
The classical Rayleigh-Ritz method in conjunction with suitable co-ordinate transformations is found to be effective for accurate estimation of natural frequencies of circumferentially truncated circular sector plates with simply supported straight edges. Numerical results are obtained for all the nine combinations of clamped, simply supported and free boundary conditions at the circular edges and presented in the form of graphs. The analysis confirms an earlier observation that the plate behaves like a long rectangular strip as the width of the plate in the radial direction becomes small.