61 resultados para PROTECTIVE COATINGS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Controlled motion of artificial nanomotors in biological environments, such as blood, can lead to fascinating biomedical applications, ranging from targeted drug delivery to microsurgery and many more. In spite of the various strategies used in fabricating and actuating nanomotors, practical issues related to fuel requirement, corrosion, and liquid viscosity have limited the motion of nanomotors to model systems such as water, serum, or biofluids diluted with toxic chemical fuels, such as hydrogen peroxide. As we demonstrate here, integrating conformal ferrite coatings with magnetic nanohelices offer a promising combination of functionalities for having controlled motion in practical biological fluids, such as chemical stability, cytocompatibility, and the generated thrust. These coatings were found to be stable in various biofluids, including human blood, even after overnight incubation, and did not have significant influence on the propulsion efficiency of the magnetically driven nanohelices, thereby facilitating the first successful ``voyage'' of artificial nanomotors in human blood. The motion of the ``nanovoyager'' was found to show interesting stick-slip dynamics, an effect originating in the colloidal jamming of blood cells in the plasma. The system of magnetic ``nanovoyagers'' was found to be cytocompatible with C2C12 mouse myoblast cells, as confirmed using MTT assay and fluorescence microscopy observations of cell morphology. Taken together, the results presented in this work establish the suitability of the ``nanovoyager'' with conformal ferrite coatings toward biomedical applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A green colored nano-pigment Y2BaCuO5 with impressive near infra-red (NIR) reflectance (61% at 1100 nm) was synthesized by a nano-emulsion method. The developed nano-crystalline powders were characterized by X-ray diffraction (XRD), Transmission electron microscopy (TEM), UV-vis-NIR diffuse reflectance spectroscopy and CIE-L*a*b* 1976 color scales. The XRD and Rietveld analyses of the designed pigment powders reveal the orthorhombic crystal structure for Y2BaCuO5, where yttrium is coordinated by seven oxygen atoms with the local symmetry of a distorted trigonal prism, barium is coordinated by eleven oxygen atoms, and the coordination polyhedron of copper is a distorted square pyramid CuO5]. The UV-vis spectrum of the nano-pigment exhibits an intense d-d transition associated with CuO5 chromophore between 2.1 and 2.5 eV in the visible domain. Therefore, a green color has been displayed by the developed nano-pigment. The potential utility of the nano-pigments as ``Cool Pigments'' was demonstrated by coating on to a building roofing material like cement slab and PVC coatings. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We previously reported interferon gamma secretion by human CD4(+) and CD8(+) T cells in response to recombinant E. coli-expressed Rv1860 protein of Mycobacterium tuberculosis (MTB) as well as protection of guinea pigs against a challenge with virulent MTB following prime-boost immunization with DNA vaccine and poxvirus expressing Rv1860. In contrast, a Statens Serum Institute Mycobacterium bovis BCG (BCG-SSI) recombinant expressing MTB Rv1860 (BCG-TB1860) showed loss of protective ability compared to the parent BCG strain expressing the control GFP protein (BCG-GFP). Since Rv1860 is a secreted mannosylated protein of MTB and BCG, we investigated the effect of BCG-TB1860 on innate immunity. Relative to BCG-GFP, BCG-TB1860 effected a significant near total reduction both in secretion of cytokines IL-2, IL-12p40, IL-12p70, TNF-alpha, IL-6 and IL-10, and up regulation of co-stimulatory molecules MHC-II, CD40, CD54, CD80 and CD86 by infected bone marrow derived dendritic cells (BMDC), while leaving secreted levels of TGF-beta unchanged. These effects were mimicked by BCG-TB1860His which carried a 6-Histidine tag at the C-terminus of Rv1860, killed sonicated preparations of BCG-TB1860 and purified H37Rv-derived Rv1860 glycoprotein added to BCG-GFP, but not by E. coli-expressed recombinant Rv1860. Most importantly, BMDC exposed to BCG-TB1860 failed to polarize allogeneic as well as syngeneic T cells to secrete IFN-gamma and IL-17 relative to BCG-GFP. Splenocytes from mice infected with BCG-SSI showed significantly less proliferation and secretion of IL-2, IFN-gamma and IL-17, but secreted higher levels of IL-10 in response to in vitro restimulation with BCG-TB1860 compared to BCG-GFP. Spleens from mice infected with BCG-TB1860 also harboured significantly fewer DC expressing MHC-II, IL-12, IL-2 and TNF-alpha compared to mice infected with BCG-GFP. Glycoproteins of MTB, through their deleterious effects on DC may thus contribute to suppress the generation of a TH1- and TH17-dominated adaptive immune response that is vital for protection against tuberculosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present work, morphology, microstructure, and electrochemical behavior of Zn coatings containing non-toxic additives have been investigated. Zn coatings were electrodeposited over mild steel substrates using Zn sulphate baths containing four different organic additives: sodium gluconate, dextrose, dextrin, and saccharin. All these additives are ``green'' and can be derived from food contents. Morphological and structural characterization using electron microscopy, x-ray diffraction, and texture co-efficient analysis revealed an appreciable alteration in the morphology and texture of the deposit depending on the type of additive used in the Zn plating bath. All the Zn coatings, however, were nano-crystalline irrespective of the type of additive used. Polarization and electrochemical impedance spectroscopic analysis, used to investigate the effect of the change in microstructure and morphology on corrosion resistance behavior, illustrated an improved corrosion resistance for Zn deposits obtained from plating bath containing additives as compared to the pure Zn coatings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thermally induced demixing in an LCST mixture, polystyrene (PS)/polyvinyl methyl ether] (PVME), was used as a template to design materials with high electrical conductivity. This was facilitated by gelation of multiwall carbon nanotubes (MWNTs) in a given phase of the blends. The MWNTs were mixed in the miscible blends and the thermodynamic driven demixing further resulted in selective localization in the PVME phase of the blends. This was further confirmed by atomic force microscopy (AFM). The time dependent gelation of MWNTs at shallow quench depth, evaluated using isochronal temperature sweep by rheology, was studied by monitoring the melt electrical conductivity of the samples in situ by an LCR meter coupled to a rheometer. By varying the composition in the mixture, several intricate shapes like gaskets and also coatings capable of attenuating the EM radiation in the microwave frequency can be derived. For instance, the PVME rich mixtures can be molded in the form of a gasket, O-ring and other intricate shapes while the PS rich mixtures can be coated onto an insulating polymer to enhance the shielding effectiveness (SE) for EM radiation. The SE of the various materials was analyzed using a vector network analyzer in both the X-band (8.2 to 12 GHz) and the K-u-band (12 to 18 GHz) frequency. The improved SE upon gelation of MWNTs in the demixed blends is well evident by comparing the SE before and after demixing. A reflection loss of -35 dB was observed in the blends with 2 wt% MWNTs. Further, by coating a layer of ca. 0.15 mm of PS/PVME/MWNT, a SE of -15 dB at 18 GHz could be obtained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of two major electrodeposition process conditions, electrolyte bath temperature and current density, on the microstructure and crystallographic texture of pure tin coatings on brass and, ultimately, on the extent of whisker formation have been examined. The grain size of the deposited coatings increased with increasing electrolyte bath temperature and current density, which significantly affected the dominant texture: (211) or (420) was the dominant texture at low current densities whereas, depending on deposition temperature, (200) or (220) became the dominant texture at high current densities. After deposition, coatings were subjected to different environmental conditions, for example isothermal aging (room temperature, 50A degrees C, or 150A degrees C) for up to 90 days and thermal cycling between -25A degrees C and 85A degrees C for 100 cycles, and whisker growth was studied. The Sn coatings with low Miller index planes, for example (200) and (220), and with moderate aging temperature were more prone to whiskering than coating with high Miller index planes, for example (420), and high aging temperature. A processing route involving the optimum combination of current density and deposition temperature is proposed for suppressing whisker growth.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ni-W alloy coatings are electrodeposited with direct and pulse current using gluconate bath at pH5. Effects of direct current (DC) and pulse current (PC) on structural characteristics of the coatings have been investigated by energy dispersive X-ray spectroscopy (EDXS), X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM), differential scanning calorimetry (DSC) and X-ray photoelectron spectroscopy (XPS). EDXS shows that W contents are 13.3 and 12.6 at.% in DC and PC (10:40) Ni-W coatings, respectively. FESEM analysis exhibits the homogeneous coarse nodular morphology in DC plated deposits. DSC studies reveal that Ni-W coatings are thermally stable up to 400 degrees C. XPS studies demonstrate that DC plated coating has significant amount of Ni and W in elemental form along with their respective oxidized species. In contrast, mainly oxidized metals are present in the as-deposited coatings prepared with PC plating. The microhardness of pulse current (100:400) deposited Ni-W coating is about 750HK that is much higher than DC plated coating (635 HK). Heat treatment of the deposits carried out at different temperatures show a significant increase in microhardness which can be comparable with hard chromium coatings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A Zn-graphene composite coating was electrodeposited on mild steel. The graphene was synthesized by electrochemical exfoliation of graphite. Electron microscopy, energy-dispersive X-ray spectroscopy and X-ray diffraction techniques were used to characterize the coatings. Compared to a pure Zn coating, the Zn-graphene coating exhibited reduced grain size, reduced surface defects, hillock structures over the coating surface and an altered texture. The corrosion behavior of the coatings was examined by Tafel polarization and electrochemical impedance spectroscopic methods. A significant improvement in the corrosion resistance in terms of reduction in corrosion current and corrosion rate and increase in polarization resistance was noted in the case of the Zn coating containing graphene.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

NiFeCr nanoparticles with a Ni-rich composition were synthesized using a wet chemical synthesis technique. As-synthesized nanoparticles were crystalline with an average size of 6.8 +/- 2.5 nm. For electrochemical analysis, as-synthesized nanoparticles were mixed with epoxy and coated over a mild steel substrate. Electrochemical measurements exhibited a very high polarization resistance and very low corrosion current for the nanoparticle-epoxy coated sample illustrating high resistance of the NiFeCr nanoparticle-epoxy coating towards highly corrosive media.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We address the problem of passive eavesdroppers in multi-hop wireless networks using the technique of friendly jamming. The network is assumed to employ Decode and Forward (DF) relaying. Assuming the availability of perfect channel state information (CSI) of legitimate nodes and eavesdroppers, we consider a scheduling and power allocation (PA) problem for a multiple-source multiple-sink scenario so that eavesdroppers are jammed, and source-destination throughput targets are met while minimizing the overall transmitted power. We propose activation sets (AS-es) for scheduling, and formulate an optimization problem for PA. Several methods for finding AS-es are discussed and compared. We present an approximate linear program for the original nonlinear, non-convex PA optimization problem, and argue that under certain conditions, both the formulations produce identical results. In the absence of eavesdroppers' CSI, we utilize the notion of Vulnerability Region (VR), and formulate an optimization problem with the objective of minimizing the VR. Our results show that the proposed solution can achieve power-efficient operation while defeating eavesdroppers and achieving desired source-destination throughputs simultaneously. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fretting is of a serious concern in many industrial components, specifically, in nuclear industry for the safe and reliable operation of various component and/or system. Under fretting condition small amplitude oscillations induce surface degradation in the form of surface cracks and/or surface wear. Comprehensive experimental studies have been carried out simulating different fretting regimes under ambient and vacuum (10(-9) MPa) conditions and, temperature up to 400 degrees C. Studies have been carried out with stainless steel spheres on stainless steel flats, and stainless steel spheres against chromium carbide, with 25% nickel chrome binder coatings. Mechanical responses are correlated with the damage observed. It has been observed that adhesion plays a vital role in material degradation process, and its effectiveness depends on mechanical variables such as normal load, interfacial tangential displacement, characteristics of the contacting bodies and most importantly on the environment conditions. Material degradation mechanism for ductile materials involved severe plastic deformation, which results in the initiation or nucleation of cracks. Ratcheting has been observed as the governing damage mode for crack nucleation under cyclic tangential loading condition. Further, propagation of the cracks has been observed under fatigue and their orientation has been observed to be governed by the contact conditions prevailing at the contact interface. Coated surfaces show damage in the form of brittle fracture and spalling of the coatings. Existence of stick slip has been observed under high normal load and low displacement amplitude. It has also been observed that adhesion at the contact interface and instantaneous cohesive strength of the contacting bodies dictates the occurrence of material transfer. The paper discusses the mechanics and mechanisms involved in fretting damage under controlled environment conditions. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Herein a facile strategy has been adopted to design epoxy based adhesive/coating materials that can shield electromagnetic radiation. Multiwalled carbon nanotubes (MWNTs) were non-covalently modified with an ionic liquid and 5,10,15,20-tetrakis(4-methoxyphenyl)-21H,23H-porphine cobalt(II) (Co-TPP). The dispersion state of modified MWNTs in the composites was assessed using a scanning electron microscope. The electrical conductivity of the composites was improved with the addition of IL and Co-TPP. The shielding effectiveness was studied as a function of thickness and intriguingly, composites with as thin as 0.5 mm thickness were observed to reflect 497% of the incoming radiation. Carbon fibre reinforced polymer substrates were used to demonstrate the adhesive properties of the designed epoxy composites. Although, the shielding effectiveness of epoxy/MWNT composites with or without IL and Co-TPP is nearly the same for 0.5 mm thick samples, the lap shear test under tensile loading revealed an extraordinary adhesive bond strength for the epoxy/IL-MWNT/Co-TPP composites in contrast to neat epoxy. For instance, the lap shear strength of epoxy/IL-MWNT/Co-TPP composites was enhanced by 100% as compared to neat epoxy. Furthermore, the composites were thermally stable for practical utility in electronic applications as inferred from thermogravimetric analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Anti-corrosive and anti-bacterial properties of electrodeposited nanocrystalline Ni-Ag coatings are illustrated. Pure Ni, Ni-7 at.% Ag, & Ni-14 at.% Ag coatings were electrodeposited on Cu substrate. Coating consisted of Ni-rich and Ag-rich solid solution phases. With increase in the Ag content, the corrosion resistance of the Ni-Ag coating initially increased and then decreased. The initial increase was due to the Ni-Ag solid solution. The subsequent decrease was due to the increased galvanic coupling between the Ag-rich and Ni-rich phases. For all Ag contents, the corrosion resistance of the Ni-Ag coating was higher than the pure Ni coating. Exposure to Sulphate Reducing Bacteria (SRB) revealed that the extent of bio-fouling decreased with increase in the Ag content. After 2 month exposure to SRB, the Ni-Ag coatings demonstrated less loss in corrosion resistance (58% for Ni-7 at.% Ag and 20% for Ni-14 at.% Ag) when compared pure Ni coating (115%). (C) 2016 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Anti-corrosive and anti-bacterial properties of electrodeposited nanocrystalline Ni-Ag coatings are illustrated. Pure Ni, Ni-7 at.% Ag, & Ni-14 at.% Ag coatings were electrodeposited on Cu substrate. Coating consisted of Ni-rich and Ag-rich solid solution phases. With increase in the Ag content, the corrosion resistance of the Ni-Ag coating initially increased and then decreased. The initial increase was due to the Ni-Ag solid solution. The subsequent decrease was due to the increased galvanic coupling between the Ag-rich and Ni-rich phases. For all Ag contents, the corrosion resistance of the Ni-Ag coating was higher than the pure Ni coating. Exposure to Sulphate Reducing Bacteria (SRB) revealed that the extent of bio-fouling decreased with increase in the Ag content. After 2 month exposure to SRB, the Ni-Ag coatings demonstrated less loss in corrosion resistance (58% for Ni-7 at.% Ag and 20% for Ni-14 at.% Ag) when compared pure Ni coating (115%). (C) 2016 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Micro-arc oxidation (MAO) coatings were prepared on AZ31B magnesium alloy using alkaline silicate electrolyte at different current densities (0.026, 0.046 and 0.067 A/cm(2)). Field Emission Scanning Electron Microscopy (FESEM) analysis of the coating revealed an irregular porous structure with cracked morphology. Compositional analysis carried out for MAO coating showed the presence of almost an equal amount of Mg and 0 (34 wt.%) apart from other elements such as F, Si and AI. The cross-sectional FESEM images clearly portrayed that the MAO coating was dense along with the presence of very few fine pores. The surface roughness (R-a) of the coatings increased with an increase in the current density. Potentiodynamic polarization and electrochemical impedance spectroscopic (EIS) studies were carried out for both the bare and MAO coated AZ31B Mg alloy in 3.5% NaCl solution. The corrosion potential (E-corr) and corrosion current density (i(corr)) values obtained for the bare substrate were -1.49 V and 46 mu A/cm(2), respectively. The coating prepared at 0.046 A/cm(2) exhibited the lowest i(corr) value of 7.79 x 10(-10) A/cm(2) and highest polarization resistance (41.6 M Omega cm(2)) attesting to the better corrosion resistance of the coating compared to other samples. EIS results also indicated almost similar corrosion behavior for the MAO coatings. Mott-Schottky analysis showed n-type and p-type semiconductor behavior for the oxide layer present on the bare magnesium alloy and MAO coatings respectively. (C) 2016 Published by Elsevier B.V.