56 resultados para PID controller based walking


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new type of multi-port isolated bidirectional DC-DC converter is proposed in this study. In the proposed converter, transfer of power takes place through addition of magnetomotive forces generated by multiple windings on a common transformer core. This eliminates the need for a centralised storage capacitor to interface all the ports. Hence, the requirement of an additional power transfer stage from the centralised capacitor can also be eliminated. The converter can be used for a multi-input, multi-output (MIMO) system. A pulse width modulation (PWM) strategy for controlling simultaneous power flow in the MIMO converter is also proposed. The proposed PWM scheme works in the discontinuous conduction mode. The leakage inductance can be chosen to aid power transfer. By using the proposed converter topology and PWM scheme, the need to compute power flow equations to determine the magnitude and direction of power flow between ports is alleviated. Instead, a simple controller structure based on average current control can be used to control the power flow. This study discusses the operating phases of the proposed multi-port converter along with its PWM scheme, the design process for each of the ports and finally experimental waveforms that validate the multi-port scheme.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A current-error space phasor based hysteresis controller with nearly constant switching frequency is proposed for a general n-level voltage source inverter fed three-phase induction motor drive. Like voltage-controlled space vector PWM (SVPWM), the proposed controller can precisely detect sub-sector changes and for switching it selects only the nearest switching voltage vectors using the information of the estimated fundamental stator voltages along α and β axes. It provides smooth transition between voltage levels, including operation in over modulation region. Due to adjacent switching amongst the nearest switching vectors forming a triangular sub-sector, in which tip of the fundamental stator voltage vector of the machine lies, switching loss is reduced while keeping the current-error space phasor within the varying parabolic boundary. Appropriate dimension and orientation of this parabolic boundary ensures similar switching frequency spectrum like constant switching frequency SVPWM-based induction motor (IM) drive. Inherent advantages of multi-level inverter and space phasor based current hysteresis controller are retained. The proposed controller is simulated as well as implemented on a 5-level inverter fed 7.5 kW open-end winding IM drive.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A DC micro-grid essentially consists of power ports, bidirectional power converter and a controller structure that enables the control of dynamic power flow. In this paper, a prototype of a micro-grid structure using a recently proposed multi-winding transformer based power converter has been implemented. The power converter topology is further extended to multiple transformer cores in order to form a growing micro-grid structure. Additionally, modifications have been made in order to incorporate a battery charge controller with the main power circuit. All the other advantages of the power converter and its control scheme are still preserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, a current hysteresis controller with parabolic boundaries for a 12-sided polygonal voltage space vector inverter fed induction motor (IM) drive is proposed. Parabolic boundaries with generalized vector selection logic, valid for all sectors and rotational direction, is used in the proposed controller. The current error space phasor boundary is obtained by first studying the drive scheme with space vector based PWM (SVPWM) controller. Four parabolas are used to approximate this current error space phasor boundary. The system is then run with space phasor based hysteresis PWM controller by limiting the current error space vector (CESV) within the parabolic boundary. The proposed controller has simple controller implementation, nearly constant switching frequency, extended modulation range and fast dynamic response with smooth transition to the over modulation region.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, a current error space vector (CESV)-based hysteresis current controller for a multilevel 12-sided voltage space vector-based inverter-fed induction motor (IM) drive is proposed. The proposed controller gives a nearly constant switching frequency operation throughout different speeds in the linear modulation region. It achieves the elimination of 6n +/- 1, n = odd harmonics from the phase voltages and currents in the entire modulation range, with an increase in the linear modulation range. It also exhibits fast dynamic behavior under different transient conditions and has a simple controller implementation. Nearly constant switching frequency is obtained by matching the steady-state CESV boundaries of the proposed controller with that of a constant switching frequency SVPWM-based drive. In the proposed controller, the CESV reference boundaries are computed online, using the switching dwell time and voltage error vector of each applied vector. These quantities are calculated from estimated sampled reference phase voltages. Vector change is decided by projecting the actual current error along the computed hysteresis space vector boundary of the presently applied vector. The estimated reference phase voltages are found from the stator current error ripple and the parameters of the IM.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study the problem of optimal sequential (''as-you-go'') deployment of wireless relay nodes, as a person walks along a line of random length (with a known distribution). The objective is to create an impromptu multihop wireless network for connecting a packet source to be placed at the end of the line with a sink node located at the starting point, to operate in the light traffic regime. In walking from the sink towards the source, at every step, measurements yield the transmit powers required to establish links to one or more previously placed nodes. Based on these measurements, at every step, a decision is made to place a relay node, the overall system objective being to minimize a linear combination of the expected sum power (or the expected maximum power) required to deliver a packet from the source to the sink node and the expected number of relay nodes deployed. For each of these two objectives, two different relay selection strategies are considered: (i) each relay communicates with the sink via its immediate previous relay, (ii) the communication path can skip some of the deployed relays. With appropriate modeling assumptions, we formulate each of these problems as a Markov decision process (MDP). We provide the optimal policy structures for all these cases, and provide illustrations of the policies and their performance, via numerical results, for some typical parameters.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In a typical enterprise WLAN, a station has a choice of multiple access points to associate with. The default association policy is based on metrics such as Re-ceived Signal Strength(RSS), and “link quality” to choose a particular access point among many. Such an approach can lead to unequal load sharing and diminished system performance. We consider the RAT (Rate And Throughput) policy [1] which leads to better system performance. The RAT policy has been implemented on home-grown centralized WLAN controller, ADWISER [2] and we demonstrate that the RAT policy indeed provides a better system performance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A nearly constant switching frequency current hysteresis controller for a 2-level inverter fed induction motor drive is proposed in this paper: The salient features of this controller are fast dynamics for the current, inherent protection against overloads and less switching frequency variation. The large variation of switching frequency as in the conventional hysteresis controller is avoided by defining a current-error boundary which is obtained from the current-error trajectory of the standard space vector PWM. The current-error boundary is computed at every sampling interval based on the induction machine parameters and from the estimated fundamental stator voltage. The stator currents are always monitored and when the current-error exceeds the boundary, voltage space vector is switched to reduce the current-error. The proposed boundary computation algorithm is applicable in linear and over-modulation region and it is simple to implement in any standard digital signal processor: Detailed experimental verification is done using a 7.5 kW induction motor and the results are given to show the performance of the drive at various operating conditions and validate the proposed advantages.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A space vector-based hysteresis current controller for any general n-level three phase inverter fed induction motor drive is proposed in this study. It offers fast dynamics, inherent overload protection and low harmonic distortion for the phase voltages and currents. The controller performs online current error boundary calculations and a nearly constant switching frequency is obtained throughout the linear modulation range. The proposed scheme uses only the adjacent voltage vectors of the present sector, similar to space vector pulse-width modulation and exhibits fast dynamic behaviour under different transient conditions. The steps involved in the boundary calculation include the estimation of phase voltages from the current ripple, computation of switching time and voltage error vectors. Experimental results are given to show the performance of the drive at various speeds, effect of sudden change of the load, acceleration, speed reversal and validate the proposed advantages.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The inverted pendulum is a popular model for describing bipedal dynamic walking. The operating point of the walker can be specified by the combination of initial mid-stance velocity (v(0)) and step angle (phi(m)) chosen for a given walk. In this paper, using basic mechanics, a framework of physical constraints that limit the choice of operating points is proposed. The constraint lines thus obtained delimit the allowable region of operation of the walker in the v(0)-phi(m) plane. A given average forward velocity v(x,) (avg) can be achieved by several combinations of v(0) and phi(m). Only one of these combinations results in the minimum mechanical power consumption and can be considered the optimum operating point for the given v(x, avg). This paper proposes a method for obtaining this optimal operating point based on tangency of the power and velocity contours. Putting together all such operating points for various v(x, avg,) a family of optimum operating points, called the optimal locus, is obtained. For the energy loss and internal energy models chosen, the optimal locus obtained has a largely constant step angle with increasing speed but tapers off at non-dimensional speeds close to unity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Measurement of out-of-plane linear motion with high precision and bandwidth is indispensable for development of precision motion stages and for dynamic characterization of mechanical structures. This paper presents an optical beam deflection (OBD) based system for measurement of out-of-plane linear motion for fully reflective samples. The system also achieves nearly zero cross-sensitivity to angular motion, and a large working distance. The sensitivities to linear and angular motion are analytically obtained and employed to optimize the system design. The optimal shot-noise limited resolution is shown to be less than one angstrom over a bandwidth in excess of 1 kHz. Subsequently, the system is experimentally realized and the sensitivities to out-of-plane motions are calibrated using a novel strategy. The linear sensitivity is found to be in agreement with theory. The angular sensitivity is shown to be over 7.5-times smaller than that of conventional OBD. Finally, the measurement system is employed to measure the transient response of a piezo-positioner, and, with the aid of an open-loop controller, reduce the settling time by about 90%. It is also employed to operate the positioner in closed-loop and demonstrate significant minimization of hysteresis and positioning error.