79 resultados para PENETRATION


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Microwave (MW) thawing of 2D frozen cylinders exposed to uniform plane waves from one face, is modeled using the effective heat capacity formulation with the MW power obtained from the electric field equations. Computations are illustrated for tylose (23% methyl cellulose gel) which melts over a range of temperatures giving rise to a mushy zone. Within the mushy region the dielectric properties are functions of the liquid volume fraction. The resulting coupled, time dependent non-linear equations are solved using the Galerkin finite element method with a fixed mesh. Our method efficiently captures the multiple connected thawed domains that arise due to the penetration of MWs in the sample. For a cylinder of diameter D, the two length scales that control the thawing dynamics are D/D-p and D/lambda(m), where D-p and lambda(m) are the penetration depth and wavelength of radiation in the sample respectively. For D/D-p, D/lambda(m) much less than 1 power absorption is uniform and thawing occurs almost simultaneously across the sample (Regime I). For D/D-p much greater than 1 thawing is seen to occur from the incident face, since the power decays exponentially into the sample (Regime III). At intermediate values, 0.2 < D/D-p, D/lambda(m) < 2.0 (Regime II) thawing occurs from the unexposed face at smaller diameters, from both faces at intermediate diameters and from the exposed and central regions at larger diameters. Average power absorption during thawing indicates a monotonic rise in Regime I and a monotonic decrease in Regime III. Local maxima in the average power observed for samples in Regime II are due to internal resonances within the sample. Thawing time increases monotonically with sample diameter and temperature gradients in the sample generally increase from Regime I to Regime III. (C) 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We control the stiffnesses of two dual double cantelevers placed in series to control penetration into a perflurooctyltrichlorosilane monolayer self assembled on aluminium and silicon substrates. The top cantilever which carries the probe is displaced with respect to the bottom cantilever which carries the substrate, the difference in displacement recorded using capacitors gives penetration. We further modulate the input displacement sinusoidally to deconvolute the viscoelastic properties of the monolayer. When the intervention is limited to the terminal end of the molecule there is a strong viscous response in consonance with the ability of the molecule to dissipate energy by the generation of gauche defects freely. When the intervention reaches the backbone, at a contact mean pressure of 0.2GPa the damping disappears abruptly and the molecule registers a steep rise in elastic modulus and relaxation time constant, with increasing contact pressure. We offer a physical explanation of the process and describe this change as due to a phase transition from a liquid like to a solid like state.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents an overview of the seismic microzonation and the grade/level based study along with methods used for estimating hazard. The principles of seismic microzonation along with some current practices are discussed. Summary of seismic microzonation experiments carried out in India is presented. A detailed work of seismic microzonation of Bangalore has been presented as a case study. In this case study, a seismotectonic map for microzonation area has been developed covering 350 km radius around Bangalore, India using seismicity and seismotectonic parameters of the region. For seismic microzonation Bangalore Mahanagar Palike (BMP) area of 220 km2 has been selected as the study area. Seismic hazard analysis has been carried out using deterministic as well as probabilistic approaches. Synthetic ground motion at 653 locations, recurrence relation and peak ground acceleration maps at rock level have been generated. A detailed site characterization has been carried out using borehole with standard penetration test (SPT) ―N‖ values and geophysical data. The base map and 3-dimensional sub surface borehole model has been generated for study area using geographical information system (GIS). Multichannel analysis of surface wave (MASW)method has been used to generate one-dimensional shear wave velocity profile at 58 locations and two- dimensional profile at 20 locations. These shear wave velocities are used to estimate equivalent shear wave velocity in the study area at every 5m intervals up to a depth of 30m. Because of wider variation in the rock depth, equivalent shear for the soil overburden thickness alone has been estimated and mapped using ArcGIS 9.2. Based on equivalent shear wave velocity of soil overburden thickness, the study area is classified as ―site class D‖. Site response study has been carried out using geotechnical properties and synthetic ground motions with program SHAKE2000.The soil in the study area is classified as soil with moderate amplification potential. Site response results obtained using standard penetration test (SPT) ―N‖ values and shear wave velocity are compared, it is found that the results based on shear wave velocity is lower than the results based on SPT ―N‖ values. Further, predominant frequency of soil column has been estimated based on ambient noise survey measurements using instruments of L4-3D short period sensors equipped with Reftek 24 bit digital acquisition systems. Predominant frequency obtained from site response study is compared with ambient noise survey. In general, predominant frequencies in the study area vary from 3Hz to 12Hz. Due to flat terrain in the study area, the induced effect of land slide possibility is considered to be remote. However, induced effect of liquefaction hazard has been estimated and mapped. Finally, by integrating the above hazard parameters two hazard index maps have been developed using Analytic Hierarchy Process (AHP) on GIS platform. One map is based on deterministic hazard analysis and other map is based on probabilistic hazard analysis. Finally, a general guideline is proposed by bringing out the advantages and disadvantages of different approaches.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents an overview of the seismic microzonation and the grade/level based study along with methods used for estimating hazard. The principles of seismic microzonation along with some current practices are discussed. Summary of seismic microzonation experiments carried out in India is presented. A detailed work of seismic microzonation of Bangalore has been presented as a case study. In this case study, a seismotectonic map for microzonation area has been developed covering 350 km radius around Bangalore, India using seismicity and seismotectonic parameters of the region. For seismic microzonation Bangalore Mahanagar Palike (BMP) area of 220 km2 has been selected as the study area. Seismic hazard analysis has been carried out using deterministic as well as probabilistic approaches. Synthetic ground motion at 653 locations, recurrence relation and peak ground acceleration maps at rock level have been generated. A detailed site characterization has been carried out using borehole with standard penetration test (SPT) ―N‖ values and geophysical data. The base map and 3-dimensional sub surface borehole model has been generated for study area using geographical information system (GIS). Multichannel analysis of surface wave (MASW)method has been used to generate one-dimensional shear wave velocity profile at 58 locations and two- dimensional profile at 20 locations. These shear wave velocities are used to estimate equivalent shear wave velocity in the study area at every 5m intervals up to a depth of 30m. Because of wider variation in the rock depth, equivalent shear for the soil overburden thickness alone has been estimated and mapped using ArcGIS 9.2. Based on equivalent shear wave velocity of soil overburden thickness, the study area is classified as ―site class D‖. Site response study has been carried out using geotechnical properties and synthetic ground motions with program SHAKE2000.The soil in the study area is classified as soil with moderate amplification potential. Site response results obtained using standard penetration test (SPT) ―N‖ values and shear wave velocity are compared, it is found that the results based on shear wave velocity is lower than the results based on SPT ―N‖ values. Further, predominant frequency of soil column has been estimated based on ambient noise survey measurements using instruments of L4-3D short period sensors equipped with Reftek 24 bit digital acquisition systems. Predominant frequency obtained from site response study is compared with ambient noise survey. In general, predominant frequencies in the study area vary from 3Hz to 12Hz. Due to flat terrain in the study area, the induced effect of land slide possibility is considered to be remote. However, induced effect of liquefaction hazard has been estimated and mapped. Finally, by integrating the above hazard parameters two hazard index maps have been developed using Analytic Hierarchy Process (AHP) on GIS platform. One map is based on deterministic hazard analysis and other map is based on probabilistic hazard analysis. Finally, a general guideline is proposed by bringing out the advantages and disadvantages of different approaches.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The method of stress characteristics has been employed to compute the end-bearing capacity of driven piles. The dependency of the soil internal friction angle on the stress level has been incorporated to achieve more realistic predictions for the end-bearing capacity of piles. The validity of the assumption of the superposition principle while using the bearing capacity equation based on soil plasticity concepts, when applied to deep foundations, has been examined. Fourteen pile case histories were compiled with cone penetration tests (CPT) performed in the vicinity of different pile locations. The end-bearing capacity of the piles was computed using different methods, namely, static analysis, effective stress approach, direct CPT, and the proposed approach. The comparison between predictions made by different methods and measured records shows that the stress-level-based method of stress characteristics compares better with experimental data. Finally, the end-bearing capacity of driven piles in sand was expressed in terms of a general expression with the addition of a new factor that accounts for different factors contributing to the bearing capacity. The influence of the soil nonassociative flow rule has also been included to achieve more realistic results.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents the results of seismic response analysis of layered ground in Ahmedabad City during the earthquake in Bhuj on 26(th) January 2001. An attempt has been made to understand the reasons for the failure of multistoreyed buildings founded on soft alluvial deposits in Ahmedabad. Standard Penetration test at a site very close to the Sabarmati river belt was carried out for geotechnical investigations. The program SHAKE91, widely used in the field of earthquake engineering for computing the seismic response of horizontally layered soil deposits, was used to analyse the soil profile at the selected site considering the ground as one dimensional layered elastic system. The ground accelerations recorded at the ground floor of the Regional Passport Staff Quarters building, which is very close to the investigated site, was used as input motion. Also, Finite Element Analysis was carried out for different configurations of multistorey building frames for evaluating their natural frequencies and is compared with the predominant frequency of the layered soil system. The results reveal that the varying degree of damage to multistorey buildings in the close proximity of Sabarmati river area was essentially due to the large amplification of the ground and the near resonance condition.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nano-indentation is a technique used to measure various mechanical properties like hardness, Young's modulus and the adherence of thin films and surface layers. It can be used as a quality control tool for various surface modification techniques like ion-implantation, film deposition processes etc. It is important to characterise the increasing scatter in the data measured at lower penetration depths observed in the nano-indentation, for the technique to be effectively applied. Surface roughness is one of the parameters contributing for the scatter. This paper is aimed at quantifying the nature and the amount of scatter that will be introduced in the measurement due to the roughness of the surface on which the indentation is carried out. For this the surface is simulated using the Weierstrass-Mandelbrot function which gives a self-affine fractal. The contact area of this surface with a conical indenter with a spherical cap at the tip is measured numerically. The indentation process is simulated using the spherical cavity model. This eliminates the indentation size effect observed at the micron and sub-micron scales. It has been observed that there exists a definite penetration depth in relation to the surface roughness beyond which the scatter is reduced such that reliable data could be obtained.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The high-pressure spray characteristics of biofuels, specifically, Pongamia oil and its blends with diesel are studied for various gas pressures. Two single-hole solenoid injectors with nozzle diameters of 200 and 260 mu m are used along with a high-pressure common-rail direct-injection system to inject fuel into a high-pressure spray visualization chamber. The spray structure is characterized using a high-speed laser-based shadowgraphy technique. The spray structure of Pongamia oil revealed the presence of an intact liquid core at low gas pressure. At high gas pressures, the spray atomization of the Pongamia oil showed marked improvement. The spray tip penetration of Pongamia oil and its blends with diesel is higher compared to that of diesel for all test conditions. The spray cone angle of Pongamia oil and 50% Pongamia oil blend with diesel is lower as compared to that of diesel. Both these observations are attributed to the presence of large droplets carrying higher momentum in oil and blend. The droplet size is measured at an injection pressure of 1000 bar and gas pressure of 30 bar at 25 mm below the nozzle tip using the particle/droplet image.analysis (PDIA) method. The droplet size measurements have shown that the Sauter mean diameter (SMD) in the spray core of Pongamia oil is more than twice that of diesel. The spray tip penetration of the 20% blend of Pongamia with diesel (P20) is similar to that of diesel but the SMD is 50% higher. Based on experimental data, appropriate spray tip penetration correlation is proposed for the vegetable oil fuels such as Pongamia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A low strain shear modulus plays a fundamental role in earthquake geotechnical engineering to estimate the ground response parameters for seismic microzonation. A large number of site response studies are being carried out using the standard penetration test (SPT) data, considering the existing correlation between SPT N values and shear modulus. The purpose of this paper is to review the available empirical correlations between shear modulus and SPT N values and to generate a new correlation by combining the new data obtained by the author and the old available data. The review shows that only few authors have used measured density and shear wave velocity to estimate shear modulus, which were related to the SPT N values. Others have assumed a constant density for all the shear wave velocities to estimate the shear modulus. Many authors used the SPT N values of less than 1 and more than 100 to generate the correlation by extrapolation or assumption, but practically these N values have limited applications, as measuring of the SPT N values of less than 1 is not possible and more than 100 is not carried out. Most of the existing correlations were developed based on the studies carried out in Japan, where N values are measured with a hammer energy of 78%, which may not be directly applicable for other regions because of the variation in SPT hammer energy. A new correlation has been generated using the measured values in Japan and in India by eliminating the assumed and extrapolated data. This correlation has higher regression coefficient and lower standard error. Finally modification factors are suggested for other regions, where the hammer energy is different from 78%. Crown Copyright (C) 2012 Published by Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Small quantity of energetic material coated on the inner wall of a polymer tube is proposed as a new method to generate micro-shock waves in the laboratory. These micro-shock waves have been harnessed to develop a novel method of delivering dry particle and liquid jet into the target. We have generated micro-shock waves with the help of reactive explosive compound high melting explosive (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine) and traces of aluminium] coated polymer tube, utilising 9 J of energy. The detonation process is initiated electrically from one end of the tube, while the micro-shock wave followed by the products of detonation escape from the open end of the polymer tube. The energy available at the open end of the polymer tube is used to accelerate tungsten micro-particles coated on the other side of the diaphragm or force a liquid jet out of a small cavity filled with the liquid. The micro-particles deposited on a thin metal diaphragm (typically 100-mu m thick) were accelerated to high velocity using micro-shock waves to penetrate the target. Tungsten particles of 0.7 mu m diameter have been successfully delivered into agarose gel targets of various strengths (0.6-1.0 %). The device has been tested by delivering micro-particles into potato tuber and Arachis hypogaea Linnaeus (ground nut) stem tissue. Along similar lines, liquid jets of diameter 200-250 mu m (methylene blue, water and oils) have been successfully delivered into agarose gel targets of various strengths. Successful vaccination against murine salmonellosis was demonstrated as a biological application of this device. The penetration depths achieved in the experimental targets are very encouraging to develop a future device for biological and biomedical applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objective of this paper is to discuss the results of the ballistic testing of spark plasma sintered TiB2-Ti based functionally graded materials (FGMs) with an aim to assess their performance in defeating small-calibre armor piercing projectiles. We studied the efficacy of FGM design and compared its ballistic properties with those of TiB2-based composites as well as other competing ceramic armors. The ballistic properties are critically analyzed in terms of depth of penetration, ballistic efficiency, fractographs of fractured surfaces as well as quantification of the shattered ceramic fragments. It was found that all the investigated ceramic compositions exhibit ballistic efficiency (eta) of 5.1 -5.9. We also found that by increasing the thickness of FGM from 5 mm to 7.8 mm, the ballistic property of the composite degraded. Also, the strength of the ceramic compositions studied is sufficient to completely fracture the nose of the pointed projectile used. Analysis of the ceramic fragments (2 mu m-10 mm) showed that harder the ceramic, coarser were the fragments formed. On comparing the results with available armor systems, it has been concluded that TiB2 based composites can show better ballistic properties, except B4C. SEM analysis of the fragments obtained after testing with FGM showed formation of cleavage steps as well as presence of intergranular cracks, indicating that the FGM fractured by mixed mode of failure. It can be concluded that the FGM developed has lower ballistic properties compared to its monolith TiB2-20 wt.% Ti.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The deformation dynamics of metal foils (<0.25 mm thick) subjected to micro-blast wave are presented in this paper. The energy of micro-blast wave emanating from the open end of a polymer tube is used to deliver micro-particles for bio-medical applications. In these experiments metal foils are used to transfer the energy of the micro-blast wave to the micro-particles. Using cubic root scaling law the over pressure of the blast wave at the open end of the polymer tube is estimated and using this peak plate over pressure is estimated. The finite element analysis is used to estimate the velocity profile of the deforming metal foils. The finite element analysis results are compared with experimental results for the maximum deformation and deformed shape. Based on the deformation velocity, metal foil to be used for experiments is selected. Among the materials investigated 0.1 mm thick brass foil has the maximum velocity of 205 m/s and is used in the experiments. It is found from finite element analysis that the particles deposited within a radius of 0.5 mm will leave the foil with nearly equal velocity (error < 5%). The spray cone angle which is the angle of deviation of the path of particles from the axis of the polymer tube is also estimated and found to be less than 7 degrees up to a radius of 0.75 mm. Illustrative experiments are carried out to deliver micro particles (0.7 mu m diameter tungsten) into plant tissues. Particle penetration depth up to 460 mu m was achieved in ground tissue of potato tuber. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report the simulation and analytical results obtained for homogenous or bulk sensing of protein on Siliconon- insulator strip waveguide based microring resonator. The radii of the rings considered are 5 μm and 20 μm; the waveguide dimensions are 300 × 300 nm. A gap of (i) 200 nm and (ii) 300 nm exists between the ring and the bus waveguide. The biomaterial is uniformly distributed over a thickness which exceeds the evanescent field penetration depth of 150 nm. The sensitivities of the resonators are 32.5 nm/RIU and 17.5 nm/RIU (RIU - Refractive index unit) respectively.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper deals with line protection challenges experienced in system having substantial wind generation penetration. Two types of WTGU: Doubly Fed (DFIG) and Squirrel Cage (SCIG) Induction Generators are simulated and connected to grid with single circuit transmission line. The paper summarizes analytical investigations carried out on the impedance seen by distance relays by varying fault resistances and grid short circuit MVA, for the protection of such transmission lines during faults. The results are also compared with systems having conventional synchronous machine connected to the grid.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study presents an overview of seismic microzonation and existing methodologies with a newly proposed methodology covering all aspects. Earlier seismic microzonation methods focused on parameters that affect the structure or foundation related problems. But seismic microzonation has generally been recognized as an important component of urban planning and disaster management. So seismic microzonation should evaluate all possible hazards due to earthquake and represent the same by spatial distribution. This paper presents a new methodology for seismic microzonation which has been generated based on location of study area and possible associated hazards. This new method consists of seven important steps with defined output for each step and these steps are linked with each other. Addressing one step and respective result may not be seismic microzonation, which is practiced widely. This paper also presents importance of geotechnical aspects in seismic microzonation and how geotechnical aspects affect the final map. For the case study, seismic hazard values at rock level are estimated considering the seismotectonic parameters of the region using deterministic and probabilistic seismic hazard analysis. Surface level hazard values are estimated considering site specific study and local site effects based on site classification/characterization. The liquefaction hazard is estimated using standard penetration test data. These hazard parameters are integrated in Geographical Information System (GIS) using Analytic Hierarchy Process (AHP) and used to estimate hazard index. Hazard index is arrived by following a multi-criteria evaluation technique - AHP, in which each theme and features have been assigned weights and then ranked respectively according to a consensus opinion about their relative significance to the seismic hazard. The hazard values are integrated through spatial union to obtain the deterministic microzonation map and probabilistic microzonation map for a specific return period. Seismological parameters are widely used for microzonation rather than geotechnical parameters. But studies show that the hazard index values are based on site specific geotechnical parameters.