60 resultados para Ovum-pick-up
Resumo:
We present here, an experimental set-up developed for the first time in India for the determination of mixing ratio and carbon isotopic ratio of air-CO2. The set-up includes traps for collection and extraction of CO2 from air samples using cryogenic procedures, followed by the measurement of CO2 mixing ratio using an MKS Baratron gauge and analysis of isotopic ratios using the dual inlet peripheral of a high sensitivity isotope ratio mass spectrometer (IRMS) MAT 253. The internal reproducibility (precision) for the PC measurement is established based on repeat analyses of CO2 +/- 0.03 parts per thousand. The set-up is calibrated with international carbonate and air-CO2 standards. An in-house air-CO2 mixture, `OASIS AIRMIX' is prepared mixing CO2 from a high purity cylinder with O-2 and N-2 and an aliquot of this mixture is routinely analyzed together with the air samples. The external reproducibility for the measurement of the CO2 mixing ratio and carbon isotopic ratios are +/- 7 (n = 169) mu mol.mol(-1) and +/- 0.05 (n = 169) parts per thousand based on the mean of the difference between two aliquots of reference air mixture analyzed during daily operation carried out during November 2009-December 2011. The correction due to the isobaric interference of N2O on air-CO2 samples is determined separately by analyzing mixture of CO2 (of known isotopic composition) and N2O in varying proportions. A +0.2 parts per thousand correction in the delta C-13 value for a N2O concentration of 329 ppb is determined. As an application, we present results from an experiment conducted during solar eclipse of 2010. The isotopic ratio in CO2 and the carbon dioxide mixing ratio in the air samples collected during the event are different from neighbouring samples, suggesting the role of atmospheric inversion in trapping the emitted CO2 from the urban atmosphere during the eclipse.
Resumo:
We extend our analysis of transverse single spin asymmetry in electroproduction of J/psi to include the effect of the scale evolution of the transverse momentum dependent (TMD) parton distribution functions and gluon Sivers function. We estimate single spin asymmetry for JLab, HERMES, COMPASS, and eRHIC energies using the color evaporation model of charmonium production, using an analytically obtained approximate solution of TMD evolution equations discussed in the literature. We find that there is a reduction in the asymmetry compared with our predictions for the earlier case considered by us, wherein the Q(2) dependence came only from DGLAP evolution of the unpolarized gluon densities and a different parametrization of the TMD Sivers function was used.
Resumo:
Using the two-component random phase approximation, we report the collective mode spectrum of a quasi-one-dimensional spatially separated electron-hole double-layer system characterized by rolled-up type-II band aligned quantum wells. We find two intra-subband collective excitations, which can be classified into optic and acoustic plasmon branches, and several inter-subband plasmon modes. At the long wavelength limit and up to a given wave vector, our model predicts and admits an undamped acoustic branch, which always lies in the gap between the intra-subband electron and hole continua, and an undamped optic branch residing within the gap between the inter-subband electron and hole continua, for all values of the electron-hole charge separations. This theoretical investigation suggests that the low-energy and Landau-undamped plasmon modes might exist based on quasi-one-dimensional, two-component spatially separated electron-hole plasmas, and their possibility could be experimentally examined. (C) 2013 AIP Publishing LLC.
Resumo:
The present work involves a computational study of soot (chosen as a scalar which is a primary pollutant source) formation and transport in a laminar acetylene diffusion flame perturbed by a convecting line vortex. The topology of soot contours resulting from flame vortex interactions has been investigated. More soot was produced when vortex was introduced from the air side in comparison to the fuel side. Also, the soot topography was spatially more diffuse in the case of air side vortex. The computational model was found to be in good agreement with the experimental work previously reported in the literature. The computational simulation enabled a study of various parameters like temperature, equivalence ratio and temperature gradient affecting the soot production and transport. Temperatures were found to be higher in the case of air side vortex in contrast to the fuel side one. In case of fuel side vortex, abundance of fuel in the vortex core resulted in fuel-rich combustion zone in the core and a more discrete soot topography. Besides, the overall soot production was observed to be low in the fuel side vortex. However, for the air side vortex, air abundance in the core resulted in higher temperatures and greater soot production. Probability density functions (PDFs) have been introduced to investigate the spatiotemporal variation of soot yield and transport and their dependence on temperature and acetylene concentration from statistical view point. In addition, the effect of flame curvature on soot production is also studied. The regions convex to fuel stream side witnessed thicker soot layer. All numerical simulations have been carried out on Fluent 6.3.26. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
This paper presents the design of a start up power circuit for a control power supply (CPS) which feeds power to the sub-systems of High Power Converters (HPC). The sub-systems such as gate drive card, annunciation card, protection and delay card etc; needs to be provided power for the operation of a HPC. The control power supply (CPS) is designed to operate over a wide range of input voltage from 90Vac to 270Vac. The CPS output supplies power at a desired voltage of Vout =24V to the auxiliary sub-systems of the HPC. During the starting, the power supply to the control circuitry of CPS in turn, is obtained using a separate start-up power supply. This paper discusses the various design issues of the start-up power circuit to ensure that start-up and shut down of the CPS occurs reliably. The CPS also maintains the power factor close to unity and low total harmonic distortion in input current. The paper also provides design details of gate drive circuits employed for the CPS as well as the design of on-board power supply for the CPS. Index terms: control power supply, start-up power supply, DSFC, pre-regulator
Resumo:
Differential occupancy of space can lead to species coexistence. The fig-fig wasp pollination system hosts species-specific pollinating and parasitic wasps that develop within galls in a nursery comprising a closed inflorescence, the syconium. This microcosm affords excellent opportunities for investigating spatial partitioning since it harbours a closed community in which all wasp species are dependent on securing safe sites inside the syconium for their developing offspring while differing in life history, egg deposition strategies and oviposition times relative to nursery development. We determined ontogenetic changes in oviposition sites available to the seven-member fig wasp community of Ficus racemosa comprising pollinators, gallers and parasitoids. We used species distribution models (SDMs) for the first time at a microcosm scale to predict patterns of spatial occurrence of nursery occupants. SDMs gave high true-positive and low false-positive site occupancy rates for most occupants indicating species specificity in oviposition sites. The nursery microcosm itself changed with syconium development and sequential egg-laying by different wasp species. The number of sites occupied by offspring of the different wasp species was negatively related to the risk of syconium abortion by the plant host following oviposition. Since unpollinated syconia are usually aborted, parasitic wasps ovipositing into nurseries at the same time as the pollinator targeted many sites, suggesting response to lower risk of syconium abortion owing to reduced risk of pollination failure compared to those species ovipositing before pollination. Wasp life history and oviposition time relative to nursery development contributed to the co-existence of nursery occupants.
Resumo:
Background: We recently reported significant association of non-polio enteroviruses (NPEVs) with acute diarrhea in children. Persistent diarrhea (PD) remains a major cause of morbidity and mortality in infants below two years of age in developing countries. Understanding age-dependent frequency and duration of NPEV infections is important to determine their association with persistent diarrhea and disease burden. Objectives: A cohort of 140 infants was followed for 6 months to 2 years of age to determine the frequency, duration, and association with PD of NPEV infections in comparison with rotavirus and other agents. Study design: Stool samples were collected every 14 days, and diarrheal episodes and their duration were recorded. Enteroviruses were characterized by RT-PCR and VP1 gene sequence analysis, rotavirus by electropherotyping, and other agents by PCR. Results: Of 4545 samples, negative for oral polio vaccine strains, 3907 (85.96%) and 638 (14.04%) were NPEV-negative and NPEV-positive, respectively, representing 403 (8.87%) infection episodes. About 68% of NPEV infections occurred during the first year with every child having at least one episode lasting between four days and four months. Approximately 38% and 22% of total diarrheal episodes were positive for NPEV and RV, respectively. While about 18% of NPEV infection episodes were associated with diarrhea, 6% being persistent, 13% of total diarrheal episodes were persistent involving infections by monotype NPEV strains or sequential infections by multiple strains and other agents. Conclusions: This is the first report revealing NPEVs as the single most frequently and persistently detected viral pathogen in every PD episode. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Given a connected outerplanar graph G of pathwidth p, we give an algorithm to add edges to G to get a supergraph of G, which is 2-vertex-connected, outerplanar and of pathwidth O(p). This settles an open problem raised by Biedl 1], in the context of computing minimum height planar straight line drawings of outerplanar graphs, with their vertices placed on a two-dimensional grid. In conjunction with the result of this paper, the constant factor approximation algorithm for this problem obtained by Biedl 1] for 2-vertex-connected outerplanar graphs will work for all outer planar graphs. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Friction stir processing (FSP) is emerging as one of the most competent severe plastic deformation (SPD) method for producing bulk ultra-fine grained materials with improved properties. Optimizing the process parameters for a defect free process is one of the challenging aspects of FSP to mark its commercial use. For the commercial aluminium alloy 2024-T3 plate of 6 mm thickness, a bottom-up approach has been attempted to optimize major independent parameters of the process such as plunge depth, tool rotation speed and traverse speed. Tensile properties of the optimum friction stir processed sample were correlated with the microstructural characterization done using Scanning Electron Microscope (SEM) and Electron Back-Scattered Diffraction (EBSD). Optimum parameters from the bottom-up approach have led to a defect free FSP having a maximum strength of 93% the base material strength. Micro tensile testing of the samples taken from the center of processed zone has shown an increased strength of 1.3 times the base material. Measured maximum longitudinal residual stress on the processed surface was only 30 MPa which was attributed to the solid state nature of FSP. Microstructural observation reveals significant grain refinement with less variation in the grain size across the thickness and a large amount of grain boundary precipitation compared to the base metal. The proposed experimental bottom-up approach can be applied as an effective method for optimizing parameters during FSP of aluminium alloys, which is otherwise difficult through analytical methods due to the complex interactions between work-piece, tool and process parameters. Precipitation mechanisms during FSP were responsible for the fine grained microstructure in the nugget zone that provided better mechanical properties than the base metal. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
We present estimates of single spin asymmetry in the electroproduction of J/psi taking into account the transverse momentum-dependent (TMD) evolution of the gluon Sivers function. We estimate single spin asymmetry for JLab, HERMES, COMPASS and eRHIC energies using the color evaporation model of J/psi. We have calculated the asymmetry using recent parameters extracted by Echevarria et al. using the Collins-Soper-Sterman approach to TMD evolution. These recent TMD evolution fits are based on the evolution kernel in which the perturbative part is resummed up to next-to-leading logarithmic accuracy. We have also estimated the asymmetry by using parameters which had been obtained by a fit by Anselmino et al., using both an exact numerical and an approximate analytical solution of the TMD evolution equations. We find that the variation among the different estimates obtained using TMD evolution is much smaller than between these on one hand and the estimates obtained using DGLAP evolution on the other. Even though the use of TMD evolution causes an overall reduction in asymmetries compared to the ones obtained without it, they remain sizable. Overall, upon use of TMD evolution, predictions for asymmetries stabilize.
Resumo:
Detailed pedofacies characterization along-with lithofacies investigations of the Mio-Pleistocene Siwalik sediments exposed in the Ramnagar sub-basin have been studied so as to elucidate variability in time and space of fluvial processes and the role of intra- and extra-basinal controls on fluvial sedimentation during the evolution of the Himalayan foreland basin (HFB). Dominance of multiple, moderately to strongly developed palaeosol assemblages during deposition of Lower Siwalik (similar to 12-10.8 Ma) sediments suggest that the HFB was marked by Upland set-up of Thomas et al. (2002). Activity of intra-basinal faults on the uplands and deposition of terminal fans at different times caused the development of multiple soils. Further, detailed pedofacies along-with lithofacies studies indicate prevalence of stable tectonic conditions and development of meandering streams with broad floodplains. However, the Middle Siwalik (similar to 10.8-4.92 Ma) sub-group is marked by multistoried sandstones and minor mudstone and mainly weakly developed palaeosols, indicating deposition by large braided rivers in the form of megafans in a Lowland set-up of Thomas et al. (2002). Significant change in nature and size of rivers from the Lower to Middle Siwalik at similar to 10 Ma is found almost throughout of the basin from Kohat Plateau (Pakistan) to Nepal because the Himalayan orogeny witnessed its greatest tectonic upheaval at this time leading to attainment of great heights by the Himalaya, intensification of the monsoon, development of large rivers systems and a high rate of sedimentation, hereby a major change from the Upland set-up to the Lowland set-up over major parts of the HFB. An interesting geomorphic environmental set-up prevailed in the Ramnagar sub-basin during deposition of the studied Upper Siwalik (similar to 4.92 to <1.68 Ma) sediments as observed from the degree of pedogenesis and the type of palaeosols. In general, the Upper Siwalik sub-group in the Ramnagar sub-basin is subdivided from bottom to top into the Purmandal sandstone (4.92-4.49 Ma), Nagrota (4.49-1.68 Ma) and Boulder Conglomerate (<1.68 Ma) formations on the basis of sedimentological characters and change in dominant lithology. Presence of mudstone, a few thin gravel beds and dominant sandstone lithology with weakly to moderately developed palaeosols in the Purmandal sandstone Fm. indicates deposition by shallow braided fluvial streams. The deposition of mudstone dominant Nagrota Fm. with moderately to some well developed palaeosols and a zone of gleyed palaeosols with laminated mudstones and thin sandstones took place in an environment marked by numerous small lakes, water-logged regions and small streams in an environment just south of the Piedmont zone, perhaps similar to what is happening presently in the Upland region/the Upper Gangetic plain. This area is locally called the `Trai region' (Pascoe, 1964). Deposition of Boulder Conglomerate Fm. took place by gravelly braided river system close to the Himalayan Ranges. Activity along the Main Boundary Fault led to progradation of these environments distal-ward and led to development of on the whole a coarsening upward sequence. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Atomization is the process of disintegration of a liquid jet into ligaments and subsequently into smaller droplets. A liquid jet injected from a circular orifice into cross flow of air undergoes atomization primarily due to the interaction of the two phases rather than an intrinsic break up. Direct numerical simulation of this process resolving the finest droplets is computationally very expensive and impractical. In the present study, we resort to multiscale modelling to reduce the computational cost. The primary break up of the liquid jet is simulated using Gerris, an open source code, which employs Volume-of-Fluid (VOF) algorithm. The smallest droplets formed during primary atomization are modeled as Lagrangian particles. This one-way coupling approach is validated with the help of the simple test case of tracking a particle in a Taylor-Green vortex. The temporal evolution of the liquid jet forming the spray is captured and the flattening of the cylindrical liquid column prior to breakup is observed. The size distribution of the resultant droplets is presented at different distances downstream from the location of injection and their spatial evolution is analyzed.
Resumo:
The Variational Asymptotic Method (VAM) is used for modeling a coupled non-linear electromechanical problem finding applications in aircrafts and Micro Aerial Vehicle (MAV) development. VAM coupled with geometrically exact kinematics forms a powerful tool for analyzing a complex nonlinear phenomena as shown previously by many in the literature 3 - 7] for various challenging problems like modeling of an initially twisted helicopter rotor blades, matrix crack propagation in a composite, modeling of hyper elastic plates and various multi-physics problems. The problem consists of design and analysis of a piezocomposite laminate applied with electrical voltage(s) which can induce direct and planar distributed shear stresses and strains in the structure. The deformations are large and conventional beam theories are inappropriate for the analysis. The behavior of an elastic body is completely understood by its energy. This energy must be integrated over the cross-sectional area to obtain the 1-D behavior as is typical in a beam analysis. VAM can be used efficiently to approximate 3-D strain energy as closely as possible. To perform this simplification, VAM makes use of thickness to width, width to length, width multiplied by initial twist and strain as small parameters embedded in the problem definition and provides a way to approach the exact solution asymptotically. In this work, above mentioned electromechanical problem is modeled using VAM which breaks down the 3-D elasticity problem into two parts, namely a 2-D non-linear cross-sectional analysis and a 1-D non-linear analysis, along the reference curve. The recovery relations obtained as a by-product in the cross-sectional analysis earlier are used to obtain 3-D stresses, displacements and velocity contours. The piezo-composite laminate which is chosen for an initial phase of computational modeling is made up of commercially available Macro Fiber Composites (MFCs) stacked together in an arbitrary lay-up and applied with electrical voltages for actuation. The expressions of sectional forces and moments as obtained from cross-sectional analysis in closed-form show the electro-mechanical coupling and relative contribution of electric field in individual layers of the piezo-composite laminate. The spatial and temporal constitutive law as obtained from the cross-sectional analysis are substituted into 1-D fully intrinsic, geometrically exact equilibrium equations of motion and 1-D intrinsic kinematical equations to solve for all 1-D generalized variables as function of time and an along the reference curve co-ordinate, x(1).
Resumo:
The ATLAS and CMS collaborations at the LHC have performed analyses on the existing data sets, studying the case of one vector-like fermion or multiplet coupling to the standard model Yukawa sector. In the near future, with more data available, these experimental collaborations will start to investigate more realistic cases. The presence of more than one extra vector-like multiplet is indeed a common situation in many extensions of the standard model. The interplay of these vector-like multiplet between precision electroweak bounds, flavour and collider phenomenology is a important question in view of establishing bounds or for the discovery of physics beyond the standard model. In this work we study the phenomenological consequences of the presence of two vector-like multiplets. We analyse the constraints on such scenarios from tree-level data and oblique corrections for the case of mixing to each of the SM generations. In the present work, we limit to scenarios with two top-like partners and no mixing in the down-sector.
Resumo:
The present work deals with the structural and efficient down-shifting (DS) and up-conversion (UC) luminescence properties of erbium ion (Er3+) doped nanocrystalline barium sodium niobate (Ba2Na1-3xErxNb5O15, where x = 0, 0.02, 0.04 and 0.06) powders synthesized via novel citrate-based sol-gel route. The monophasic nature of the title compound was confirmed via x-ray powder diffraction followed by FT-IR studies. High-resolution transmission electron microscopy (HRTEM) facilitated the establishment of the nanocrystalline phase and the morphology of the crystallites. The Kubelka-Munk function, based on diffused reflectance studies and carried out on nano-sized crystallites, was employed to obtain the optical band-gap. The synthesized nanophosphor showed efficient DS/PL-photoluminescence and UC luminescence properties, which have not yet been reported so far in this material. The material emits intense DS green emission on excitation with 378 nm radiation. Interestingly, the material gives intense UC emission in the visible region dominated by green emission and relatively weak red emission on 976 nm excitation (NIR laser excitation). Such a dual-mode emitting nanophosphor could be very useful in display devices and for many other applications.