316 resultados para Organic molecules


Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The validity of various qualitative proposals for interpreting and predicting the existence of short contacts between formally non-bonded atoms, as in cyclodisiloxane and related inorganic ring systems, is critically evaluated. The models range from simple considerations of geometric constraints, lone pair repulsions and pi-complex formation to proposals such as the unsupported pi-bond model and the sigma-bridged-pi bond concept. It is pointed out that a unified description based on a combination of closed and open 3-centre 2-electron bonds is possible. The role of hybridisation is emphasized in the short phantom bond computed in an earlier model system. These insights are used to predict structures with exceptionally short Si..Si and B..B phantom bonds. The proposals are confirmed by ab initio calculations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The design of compounds with novel and improved physico-chemical properties as advanced functional materials with a specific application spectrum requires the knowledge about possible supramolecular packing motifs and their experimental control in crystalline lattice. Besides the structure of the individual molecule, non-covalent interactions play a significant role in the determination of molecular conformation, along with the formation of three-dimensional supramolecular architecture in a crystal as a requirement for molecular recognition processes, and the related bioactivity. Involvement of functional groups will contribute to the formation of a predefined packing motif due to their well-defined interactions. The strength and directionality of these interactions create characteristic packing motifs, which can be used for the design of supramolecular arrangements by the development of appropriate strategies for the precise control of their topology. Most relevant of these non-covalent interactions are stacking interactions and hydrogen bonds, which have been subjects of extensive study in the last two decades. In recent literature, substantial efforts have been put in by various researchers towards the understanding of interactions involving organic fluorine and the role they play in generating different packing motifs which guides assembling of molecules in the crystal lattice.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In order to investigate the supramolecular hydrogen-bonded networks and other structural features exhibited by compounds containing an organic cation and an inorganic anion, sulfates of the organic diamines, ethylenediamine (I), 1,3-diaminopropane (II), piperazine (III), and 1,4-diazabicyclo[2.2.2]octane (DABCO) (IV) have been prepared investigated by X-ray crystallography. While II, III, and IV crystallize in the centrosymmetric space group, Pbca, P2(1)/n, Pbcn, respectively, I crystallizes in the non-centrosymmetric space group, P4(1) exhibiting chirality and weak NLO properties. I-IV exhibit different types of supramolecular H-bonded networks involving the organic cation and the SO42- anion. The nature and strength of the H-bonding network vary from one compound to another, with the strongest network found in piperazinium sulfate, III, and the weakest in II. While in III, water molecules form part of the H-bonded network, they are present as guest molecules in the channels of IV. Thermal stability of the compounds as well as the infrared spectra reflect the stabilities of these H-bonded solids. (C) 2002 Editions scientifiques et medicales Elsevier SAS. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A reaction of copper acetate, 5-nitroisophthalic acid in a water-methanol mixture under solvothermal condition results in a new metal-organic framework compound, [Cu(5)(mu(3)-OH)(2)(H(2)O)(6){(NO(2))-C(6)H(3)-(COO)(2)}(4)]center dot 5H(2)O, (1). The compound contains Cu5 pentameric cluster units connected by 5-nitro isophthalate (NIPA) moieties forming a CdCl(2)-like layer, which are further connected by another NIPA moiety forming the three-dimensional structure. The water molecules in (1) can be reversibly adsorbed. The removal of water accompanies a change in the colour as well as a structural re-organization. Magnetic studies suggest strong antiferromagnetie correlations between the Cu5 cluster units. The compound (1) exhibits heterogeneous Lewis acid catalysis for the cyanosilylation of imines with more than 95 % selectivity. Compound (1) has been characterized by IR, UV-vis, TGA, powder XRD studies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two copper-containing compounds [Cu(3)(mu(3)-OH)(2)-(H(2)O)(2){(SO(3))-C(6)H(3)-(COO)(2)}(CH(3)COO)] , I, and [Cu(5)(mu(3)-OH)(2)(H(2)O)(6){(NO(2))-C(6)H(3)-(COO)(2)}(4)]center dot 5H(2)O, II, were prepared using sulphoisophthalic and nitroisophthalic acids. The removal of the coordinated water molecules in the compounds was investigated using in situ single crystal to single crystal (SCSC) transformation studies, temperature-dependent powder X-ray diffraction (PXRD), and thermogravimetric analysis (TGA). The efficacy of SCSC transformation studies were established by the observation of dimensionality cross-over from a two-dimensional (I) to a three-dimensional structure, Cu(6)(mu(3)-OH)(4){(SO(3))-C(6)H(3)-(COO)(2)}(2)(CH(3)COO)(2), Ia, during the removal of the coordinated water molecules. Compound H exhibited a structural reorganization forming Cu(5)(mu(2)-OH)(2){(NO(2))C(6)H(3)-(COO)(2))(4)], Ha, possessing trimeric (Cu(3)O(12)) and dimeric (Cu(2)O(8)) copper clusters. The PXRD studies indicate that the three-dimensional structure (Ia) is transient and unstable, reverting back to the more stable two-dimensional structure (I) on cooling to room temperature. Compound Ha appears to be more stable at room temperature. The rehydration/dehydration studies using a modified TGA setup suggest complete rehydration of the water molecules, indicating that the water molecules in both compounds are labile. A possible model for the observed changes in the structures has been proposed. Magnetic studies indicate changes in the exchanges between the copper centers in Ha, whereas no such behavior was observed in Ia.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Regulation of the transcription machinery is one of the many ways to achieve control of gene expression. This has been done either at the transcription initiation stage or at the elongation stage. Different methodologies are known to inhibit transcription initiation via targeting of double-stranded (ds) DNA by: (i) synthetic oligonucleotides, (ii) ds-DNA-specific, sequenceselective minor-groove binders (distamycin A), intercalators (daunomycin) combilexins and (iii) small molecule (peptide or intercalator)-oligonucleotide conjugates. In some cases, instead of ds-DNA, higher order G-quadruplex structures are formed at the start site of transcription. In this regard G-quadruplex DNA-specific small molecules play a significant role towards inhibition of the transcription machinery. Different types of designer DNA-binding agents act as powerful sequence-specific gene modulators, by exerting their effect from transcription regulation to gene modification. But most of these chemotherapeutic agents have serious side effects. Accordingly, there is always a challenge to design such DNA-binding molecules that should not only achieve maximum specific DNA-binding affinity, and cellular and nuclear transport activity, but also would not interfere with the functions of normal cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The determination of the crystal and molecular structures of a large number of compounds containing the C(sp(2))-F bond has been investigated in detail in halogenated benzanilides and also in liquids, namely the fluorinated amines. It has been observed that when the fluorine atom is present in the ortho or meta position with respect to the amide functionality in benzanilides or the amino group in fluorinated amines which are liquids at room temperature, the fluorine atom exhibits positional disorder. This is associated with changes in patterns of intermolecular interactions which affect crystal packing. Furthermore, the presence of a fluorine atom on the benzanilide framework, in the presence of a heavier halogen (chloro, bromo and iodo), meta or ortho to the amide group does not eliminate the disorder associated with these molecules. In this article, we highlight the salient features present in halogenated compounds exhibiting disorder in the position of organic fluorine with concomitant changes in crystal packing. This feature is also compared with related compounds exhibiting similarity in electronic features, namely positional disorder.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The direct evidence for the existence of intra-molecular C-F center dot center dot center dot H-N hydrogen bond in organofluorine molecules, in the liquid state, is derived using NMR spectroscopy by the detection of long range interactions among fluorine, nitrogen and hydrogen atoms. The present study reports the determination of the relative signs and magnitudes of through space and through bond couplings to draw unambiguous evidence on the existence of weak molecular interactions involving organic fluorine. It is a simple, easy to implement, N-15 natural abundant two dimensional heteronuclear N-15-H-1 double quantum-single quantum correlation experiment. The existence of intra-molecular hydrogen bond is conclusively established in the investigated molecules. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We show with the aid of first-principles electronic structure calculations that suitable choice of the capping ligands may be an important control parameter for crystal structure engineering of nanoparticles. Our calculations on CdS nanocrystals reveal that the binding energy of model trioctylphosphine molecules on the (001) facets of zincblende nanocrystals is larger compared to that on wurtzite facets. Similarly, the binding energy of model cis-oleic acid is found to be dominant for the (10 (1) over bar0) facets of wurtzite structure. As a consequence, trioctylphosphine as a capping agent stabilizes the zincblende structure while cis-oleic acid stabilizes the wurtzite phase by influencing the surface energy, which has a sizable contribution to the energetics of a nanocrystal. Our detailed analysis suggests that the binding of molecules on the nanocrystalline facets depends on the surface topology of the facets, the coordination of the surface atoms where the capping molecule is likely to attach, and the conformation of the capping molecule.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Three new solution processable quinoxaline based donor-acceptor-donor (D-A-D) type molecules have been synthesized for application in field effect transistors. These molecules were characterized by UV-visible spectroscopy, thermal gravimetric analysis, differential scanning calorimetry and cyclic voltammetry. DFT calculation gives deeper insight into the electronic structure of these molecules. The crystallinity and morphology features of thin film were investigated using X-ray diffraction. These molecules show liquid crystalline phase confirmed by DSC and optical polarizing microscopy. Investigation of their field effect transistor performance indicated that these molecules exhibited p-type mobility up to 9.7 x 10 (4) cm(2) V (1) s (1) and on/off ratio of 10(4). (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A single-step magnetic separation procedure that can remove both organic pollutants and arsenic from contaminated water is clearly a desirable goal. Here we show that water dispersible magnetite nanoparticles prepared by anchoring carboxymethyl-beta-cyclodextrin (CMCD) cavities to the surface of magnetic nanoparticles are suitable host carriers for such a process. Monodisperse, 10 nm, spherical magnetite, Fe3O4, nanocrystals were prepared by the thermal decomposition of FeOOH. Trace amounts of antiferromagnet, FeO, present in the particles provides an exchange bias field that results in a high superparamagnetic blocking temperature and appreciable magnetization values that facilitate easy separation of the nanocrystals from aqueous dispersions on application of modest magnetic fields. We show here that small molecules like naphthalene and naphthol can be removed from aqueous media by forming inclusion complexes with the anchored cavities of the CMCD-Fe3O4 nanocrystals followed by separation of the nanocrystals by application of a magnetic field. The adsorption properties of the iron oxide surface towards As ions are unaffected by the CMCD capping so it too can be simultaneously removed in the separation process. The CMCD-Fe3O4 nanocrystals provide a versatile platform for magnetic separation with potential applications in water remediation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present compelling theoretical results showing that fused azulene molecules are strong candidates for exhibiting room temperature multiferroic behavior, i.e., having both ferroelectric and ferromagnetic properties. If this is experimentally proved, these systems will be organic multiferroic materials with important potential applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Six new copper metal complexes with formulas Cu(H2O)(2,2'-bpy) (H2L)](2) center dot H4L center dot 4 H2O (1), {Cu(H2O)(2,2'-bpy)-(H3L)}(2)(H2L)]center dot 2H(2)O (2), Cu(H2O)(1,10-phen)(H2L)](2)center dot 6H(2)O (3), Cu(2,2'-bpy)(H2L)](n)center dot nH(2)O (4), Cu(1,10-phen)(H2L)](n)center dot 3nH(2)O (5), and {Cu(2,2'-bpy)(MoO3)}(2)(L)](n)center dot 2nH(2)O (6) have been synthesized starting from p-xylylenediphosphonic acid (H4L) and 2,2'-bipyridine (2,2'-bpy) or 1,10-phenanthroline (1,10-phen) as secondary linkers and characterized by single crystal X-ray diffraction analysis, IR spectroscopy, and thermogravimetric (TG) analysis. All the complexes were synthesized by hydrothermal methods. A dinuclear motif (Cu-dimer) bridged by phosphonic acid represents a new class of simple building unit (SBU) in the construction of coordination architectures in metal phosphonate chemistry. The initial pH of the reaction mixture induced by the secondary linker plays an important role in the formation of the molecular phosphonates 1, 2, and 3. Temperature dependent hydrothermal synthesis of the compounds 1, 2, and 3 reveals the mechanism of the self assembly of the compounds based on the solubility of the phosphonic acid H4L. Two-dimensional coordination polymers 4, 5, and 6, which are formed by increasing the pH of the reaction mixture, comprise Cu-dimers as nodes, organic (H2L) and inorganic (Mo4O12) ligands as linkers. The void space-areas, created by the (4,4) connected nets in compounds 4 and 5, are occupied by lattice water molecules. Thus compounds 4 and 5 have the potential to accommodate guest species/molecules. Variable temperature magnetic studies of the compounds 3, 4, 5, and 6 reveal the antiferromagnetic interactions between the two Cu(II) ions in the eight membered ring, observed in their crystal structures. A density functional theory (DFT) calculation correlates the conformation of the Cu-dimer ring with the magnitude of the exchange parameter based on the torsion angle of the conformation.