304 resultados para Optimal Scaling


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study a scheduling problem in a wireless network where vehicles are used as store-and-forward relays, a situation that might arise, for example, in practical rural communication networks. A fixed source node wants to transfer a file to a fixed destination node, located beyond its communication range. In the absence of any infrastructure connecting the two nodes, we consider the possibility of communication using vehicles passing by. Vehicles arrive at the source node at renewal instants and are known to travel towards the destination node with average speed v sampled from a given probability distribution. Th source node communicates data packets (or fragments) of the file to the destination node using these vehicles as relays. We assume that the vehicles communicate with the source node and the destination node only, and hence, every packet communication involves two hops. In this setup, we study the source node's sequential decision problem of transferring packets of the file to vehicles as they pass by, with the objective of minimizing delay in the network. We study both the finite file size case and the infinite file size case. In the finite file size case, we aim to minimize the expected file transfer delay, i.e. expected value of the maximum of the packet sojourn times. In the infinite file size case, we study the average packet delay minimization problem as well as the optimal tradeoff achievable between the average queueing delay at the source node buffer and the average transit delay in the relay vehicle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Combining the advanced techniques of optimal dynamic inversion and model-following neuro-adaptive control design, an innovative technique is presented to design an automatic drug administration strategy for effective treatment of chronic myelogenous leukemia (CML). A recently developed nonlinear mathematical model for cell dynamics is used to design the controller (medication dosage). First, a nominal controller is designed based on the principle of optimal dynamic inversion. This controller can treat the nominal model patients (patients who can be described by the mathematical model used here with the nominal parameter values) effectively. However, since the system parameters for a realistic model patient can be different from that of the nominal model patients, simulation studies for such patients indicate that the nominal controller is either inefficient or, worse, ineffective; i.e. the trajectory of the number of cancer cells either shows non-satisfactory transient behavior or it grows in an unstable manner. Hence, to make the drug dosage history more realistic and patient-specific, a model-following neuro-adaptive controller is augmented to the nominal controller. In this adaptive approach, a neural network trained online facilitates a new adaptive controller. The training process of the neural network is based on Lyapunov stability theory, which guarantees both stability of the cancer cell dynamics as well as boundedness of the network weights. From simulation studies, this adaptive control design approach is found to be very effective to treat the CML disease for realistic patients. Sufficient generality is retained in the mathematical developments so that the technique can be applied to other similar nonlinear control design problems as well.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pricing is an effective tool to control congestion and achieve quality of service (QoS) provisioning for multiple differentiated levels of service. In this paper, we consider the problem of pricing for congestion control in the case of a network of nodes under a single service class and multiple queues, and present a multi-layered pricing scheme. We propose an algorithm for finding the optimal state dependent price levels for individual queues, at each node. The pricing policy used depends on a weighted average queue length at each node. This helps in reducing frequent price variations and is in the spirit of the random early detection (RED) mechanism used in TCP/IP networks. We observe in our numerical results a considerable improvement in performance using our scheme over that of a recently proposed related scheme in terms of both throughput and delay performance. In particular, our approach exhibits a throughput improvement in the range of 34 to 69 percent in all cases studied (over all routes) over the above scheme.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

EcoP15I is a type III restriction enzyme that requires two recognition sites in a defined orientation separated by up to 3.5 kbp to efficiently cleave DNA. The mechanism through which site- bound EcoP15I enzymes communicate between the two sites is unclear. Here, we use atomic force microscopy to study EcoP15I-DNA pre-cleavage complexes. From the number and size distribution of loops formed, we conclude that the loops observed do not result from translocation, but are instead formed by a contact between site- bound EcoP15I and a nonspecific region of DNA. This conclusion is confirmed by a theoretical polymer model. It is further shown that translocation must play some role, because when translocation is blocked by a Lac repressor protein, DNA cleavage is similarly blocked. On the basis of these results, we present a model for restriction by type III restriction enzymes and highlight the similarities between this and other classes of restriction enzymes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Support Vector Machines(SVMs) are hyperplane classifiers defined in a kernel induced feature space. The data size dependent training time complexity of SVMs usually prohibits its use in applications involving more than a few thousands of data points. In this paper we propose a novel kernel based incremental data clustering approach and its use for scaling Non-linear Support Vector Machines to handle large data sets. The clustering method introduced can find cluster abstractions of the training data in a kernel induced feature space. These cluster abstractions are then used for selective sampling based training of Support Vector Machines to reduce the training time without compromising the generalization performance. Experiments done with real world datasets show that this approach gives good generalization performance at reasonable computational expense.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Average-delay optimal scheduflng of messages arriving to the transmitter of a point-to-point channel is considered in this paper. We consider a discrete time batch-arrival batch-service queueing model for the communication scheme, with service time that may be a function of batch size. The question of delay optimality is addressed within the semi-Markov decision-theoretic framework. Approximations to the average-delay optimal policy are obtained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we first describe a framework to model the sponsored search auction on the web as a mechanism design problem. Using this framework, we design a novel auction which we call the OPT (optimal) auction. The OPT mechanism maximizes the search engine's expected revenue while achieving Bayesian incentive compatibility and individual rationality of the advertisers. We show that the OPT mechanism is superior to two of the most commonly used mechanisms for sponsored search namely (1) GSP (Generalized Second Price) and (2) VCG (Vickrey-Clarke-Groves). We then show an important revenue equivalence result that the expected revenue earned by the search engine is the same for all the three mechanisms provided the advertisers are symmetric and the number of sponsored slots is strictly less than the number of advertisers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper a nonlinear optimal controller has been designed for aerodynamic control during the reentry phase of the Reusable Launch Vehicle (RLV). The controller has been designed based on a recently developed technique Optimal Dynamic Inversion (ODI). For full state feedback the controller has required full information about the system states. In this work an Extended Kalman filter (EKF) is developed to estimate the states. The vehicle (RLV) has been has been consider as a nonlinear Six-Degree-Of-Freedom (6-DOF) model. The simulation results shows that EKF gives a very good estimation of the states and it is working well with ODI. The resultant trajectories are very similar to those obtained by perfect state feedback using ODI only.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a detailed analysis of a model for military conflicts where the defending forces have to determine an optimal partitioning of available resources to counter attacks from an adversary in two different fronts in an area fire situation. Lanchester linear law attrition model is used to develop the dynamical equations governing the variation in force strength. Here we address a static resource allocation problem namely, Time-Zero-Allocation (TZA) where the resource allocation is done only at the initial time. Numerical examples are given to support the analytical results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider the problem of quickest detection of an intrusion using a sensor network, keeping only a minimal number of sensors active. By using a minimal number of sensor devices, we ensure that the energy expenditure for sensing, computation and communication is minimized (and the lifetime of the network is maximized). We model the intrusion detection (or change detection) problem as a Markov decision process (MDP). Based on the theory of MDP, we develop the following closed loop sleep/wake scheduling algorithms: (1) optimal control of Mk+1, the number of sensors in the wake state in time slot k + 1, (2) optimal control of qk+1, the probability of a sensor in the wake state in time slot k + 1, and an open loop sleep/wake scheduling algorithm which (3) computes q, the optimal probability of a sensor in the wake state (which does not vary with time), based on the sensor observations obtained until time slot k. Our results show that an optimum closed loop control on Mk+1 significantly decreases the cost compared to keeping any number of sensors active all the time. Also, among the three algorithms described, we observe that the total cost is minimum for the optimum control on Mk+1 and is maximum for the optimum open loop control on q.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider a scenario in which a wireless sensor network is formed by randomly deploying n sensors to measure some spatial function over a field, with the objective of computing a function of the measurements and communicating it to an operator station. We restrict ourselves to the class of type-threshold functions (as defined in the work of Giridhar and Kumar, 2005), of which max, min, and indicator functions are important examples: our discussions are couched in terms of the max function. We view the problem as one of message-passing distributed computation over a geometric random graph. The network is assumed to be synchronous, and the sensors synchronously measure values and then collaborate to compute and deliver the function computed with these values to the operator station. Computation algorithms differ in (1) the communication topology assumed and (2) the messages that the nodes need to exchange in order to carry out the computation. The focus of our paper is to establish (in probability) scaling laws for the time and energy complexity of the distributed function computation over random wireless networks, under the assumption of centralized contention-free scheduling of packet transmissions. First, without any constraint on the computation algorithm, we establish scaling laws for the computation time and energy expenditure for one-time maximum computation. We show that for an optimal algorithm, the computation time and energy expenditure scale, respectively, as Theta(radicn/log n) and Theta(n) asymptotically as the number of sensors n rarr infin. Second, we analyze the performance of three specific computation algorithms that may be used in specific practical situations, namely, the tree algorithm, multihop transmission, and the Ripple algorithm (a type of gossip algorithm), and obtain scaling laws for the computation time and energy expenditure as n rarr infin. In particular, we show that the computation time for these algorithms scales as Theta(radicn/lo- g n), Theta(n), and Theta(radicn log n), respectively, whereas the energy expended scales as , Theta(n), Theta(radicn/log n), and Theta(radicn log n), respectively. Finally, simulation results are provided to show that our analysis indeed captures the correct scaling. The simulations also yield estimates of the constant multipliers in the scaling laws. Our analyses throughout assume a centralized optimal scheduler, and hence, our results can be viewed as providing bounds for the performance with practical distributed schedulers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Active Fiber Composites (AFC) possess desirable characteristics over a wide range of smart structure applications, such as vibration, shape and flow control as well as structural health monitoring. This type of material, capable of collocated actuation and sensing, call be used in smart structures with self-sensing circuits. This paper proposes four novel applications of AFC structures undergoing torsion: sensors and actuators shaped as strips and tubes; and concludes with a preliminary failure analysis. To enable this, a powerful mathematical technique, the Variational Asymptotic Method (VAM) was used to perform cross-sectional analyses of thin generally anisotropic AFC beams. The resulting closed form expressions have been utilized in the applications presented herein.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Our attention, is focused on designing an optimal procurement mechanism which a buyer can use for procuring multiple units of a homogeneous item based on bids submitted by autonomous, rational, and intelligent suppliers. We design elegant optimal procurement mechanisms for two different situations. In the first situation, each supplier specifies the maximum quantity that can be supplied together with a per unit price. For this situation, we design an optimal mechanism S-OPT (Optimal with Simple bids). In the more generalized case, each supplier specifies discounts based on the volume of supply. In this case, we design an optimal mechanism VD-OPT (Optimal with Volume Discount, bids). The VD-OPT mechanism uses the S-OPT mechanism as a building block. The proposed mechanisms minimize the cost to the buyer, satisfying at the same time, (a) Bayesian, incentive compatibility and (b) interim individual rationality.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Folded Dynamic Programming (FDP) is adopted for developing optimalnreservoir operation policies for flood control. It is applied to a case study of Hirakud Reservoir in Mahanadi basin, India with the objective of deriving optimal policy for flood control. The river flows down to Naraj, the head of delta where a major city is located and finally joins the Bay of Bengal. As Hirakud reservoir is on the upstream side of delta area in the basin, it plays an important role in alleviating the severity of the flood for this area. Data of 68 floods such as peaks of inflow hydrograph, peak of outflow from reservoir during each flood, peak of flow hydrograph at Naraj and d/s catchment contribution are utilized. The combinations of 51, 54, 57 thousand cumecs as peak inflow into reservoir and 25.5, 20, 14 thousand cumecs respectively as,peak d/s catchment contribution form the critical combinations for flood situation. It is observed that the combination of 57 thousand cumecs of inflow into reservoir and 14 thousand cumecs for d/s catchment contribution is the most critical among the critical combinations of flow series. The method proposed can be extended to similar situations for deriving reservoir operating policies for flood control.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The problem of constructing space-time (ST) block codes over a fixed, desired signal constellation is considered. In this situation, there is a tradeoff between the transmission rate as measured in constellation symbols per channel use and the transmit diversity gain achieved by the code. The transmit diversity is a measure of the rate of polynomial decay of pairwise error probability of the code with increase in the signal-to-noise ratio (SNR). In the setting of a quasi-static channel model, let n(t) denote the number of transmit antennas and T the block interval. For any n(t) <= T, a unified construction of (n(t) x T) ST codes is provided here, for a class of signal constellations that includes the familiar pulse-amplitude (PAM), quadrature-amplitude (QAM), and 2(K)-ary phase-shift-keying (PSK) modulations as special cases. The construction is optimal as measured by the rate-diversity tradeoff and can achieve any given integer point on the rate-diversity tradeoff curve. An estimate of the coding gain realized is given. Other results presented here include i) an extension of the optimal unified construction to the multiple fading block case, ii) a version of the optimal unified construction in which the underlying binary block codes are replaced by trellis codes, iii) the providing of a linear dispersion form for the underlying binary block codes, iv) a Gray-mapped version of the unified construction, and v) a generalization of construction of the S-ary case corresponding to constellations of size S-K. Items ii) and iii) are aimed at simplifying the decoding of this class of ST codes.