86 resultados para Oligomere, Supramolekulare Chemie, Festphasensynthese, Blockcopolymere
Resumo:
Cross polarisation is extensively used in solid state NMR for enhancing signals of nuclei with low gyromagnetic ratio. However, the use of the method for providing quantitative structural and dynamics information is limited. This arises due to the fact that the mechanism which is responsible for cross polarisation namely, the dipolar interaction, has a long range and is also anisotropic. In nematic liquid crystals these limitations are easily overcome since molecules orient in a magnetic field. The uniaxial ordering of the molecules essentially removes problems associated with the angular dependence of the interactions encountered in powdered solids. The molecular motion averages out intermolecular dipolar interaction, while retaining partially averaged intramolecular interaction. In this article the use of cross polarisation for obtaining heteronuclear dipolar couplings and hence the order parameters of liquid crystals is presented. Several modifications to the basic experiment were considered and their utility illustrated. A method for obtaining proton-proton dipolar couplings, by utilizing cross polarisation from the dipolar reservoir, is also presented.
Resumo:
Learning your αβγ's: The diversity of hydrogen-bonding patterns in backbone-expanded hybrid helices is shown by crystal-structure determination of several oligomeric peptides (see scheme; C=gray; H=white; O=red; N=blue). C 12 helices were observed in the αγ peptide series for n=2-8. In comparison, the αα peptide and αβ peptide sequences show C 10 and mixed C 14/C 15 helices, respectively. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resumo:
Proton-conducting materials are an important component of fuel cells. Development of new types of proton-conducting materials is one of the most important issues in fuel-cell technology. Herein, we present newly developed proton-conducting materials, modularly built porous solids, including coordination polymers (CPs) or metalorganic frameworks (MOFs). The designable and tunable nature of the porous materials allows for fast development in this research field. Design and synthesis of the new types of proton-conducting materials and their unique proton-conduction properties are discussed.
Resumo:
Nanoindentation is a technique for measuring the elastic modulus and hardness of small amounts of materials. This method, which has been used extensively for characterizing metallic and inorganic solids, is now being applied to organic and metalorganic crystals, and has also become relevant to the subject of crystal engineering, which is concerned with the design of molecular solids with desired properties and functions. Through nanoindentation it is possible to correlate molecular-level properties such as crystal packing, interaction characteristics, and the inherent anisotropy with micro/macroscopic events such as desolvation, domain coexistence, layer migration, polymorphism, and solid-state reactivity. Recent developments and exciting opportunities in this area are highlighted in this Minireview.
Resumo:
Catch the twist: The cis Piv-Pro conformer (Piv=pivaloyl) of peptides is no longer inaccessible. Any cis X-Pro tertiary-amide-bond conformer can be stabilized in crystals of peptides by accommodating the unavoidable distortion of the dihedral angle of the peptide bond to the carbonyl group of the Pro residue (see picture), in this case through ni−1→πi* interactions. Steric clashes were not observed in the cis Piv-Pro rotamers studied.
Resumo:
We present herein a short tripeptide sequence (Lys-Phe-Gly or KFG) that is situated in the juxtamembrane region of the tyrosine kinase nerve growth factor (Trk NGF) receptors. KFG self-assembles in water and shows a reversible and concentration-dependent switching of nanostructures from nanospheres (vesicles) to nanotubes, as evidenced by dynamic light scattering, transmission electron microscopy, and atomic force microscopy. The morphology change was associated with a transition in the secondary structure. The tripeptide vesicles have inner aqueous compartments and are stable at pH7.4 but rupture rapidly at pH approximate to 6. The pH-sensitive response of the vesicles was exploited for the delivery of a chemotherapeutic anticancer drug, doxorubicin, which resulted in enhanced cytotoxicity for both drug-sensitive and drug-resistant cells. Efficient intracellular release of the drug was confirmed by fluorescence-activated cell sorting analysis, fluorescence microscopy, and confocal microscopy.