138 resultados para OXIDE-FILM FORMATION


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report the in situ optical transmission change in the complete visible region of the electromagnetic spectrum to asses the kinetics of photo induced interdiffusion in Sb/As2S3 nanomultilayered film. The interdiffusion of Sb into As2S3 matrix results in the formation of Sb-As2S3 ternary solid solutions which is explained by the change in optical band gap, absorption coefficients and Tauc parameter (B-1/2) with evolution of time. The wavelength dependence of the time constants provides a better description of photo induced effects. The time evolution of the absorption coefficients and optical band gap are significantly faster in this process. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In Ge-As-Te system, the glass forming region determined by normal melt quenching method has two regions (GFR I and GFR II) separated by few compositions gap. With a simple laboratory built twin roller apparatus, we have succeeded in preparing Ge7.5AsxTe92.5-x glasses over extended composition ranges. A distinct change in T-g is observed at x = 40, exactly at which the separation of the glass forming regions occur indicating the changes in the connectivity and the rigidity of the structural network. The maximum observed in glass transition (T-g) at x = 55 corresponding to the average coordination number (Z(av)) = 2.70 is an evidence for the shift of the rigidity percolation threshold (RPT) from Z(av) = 2.40 as predicted by the recent theories. The glass forming tendency (K-gl) and Delta T (=T-c-T-g) is low for the glasses in the GFR I and high for the glasses in the GFR II.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tungsten oxide thin films are of great interest due to their promising applications in various optoelectronic thin film devices. We have investigated the microstructural evolution of tungsten oxide thin films grown by DC magnetron sputtering on silicon substrate. The structural characterization and surface morphology were carried out using X-ray diffraction and Scanning Electron Microscopy (SEM). The as deposited films were amorphous, where as, thin films annealed above 400 degrees C were crystalline. In order to explain the microstructural changes due to annealing, we have proposed a ``instability wheel'' model for the evolution of the microstructure. This model explains the transformation of mater into various geometries within them selves, followed by external perturbation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The layered double hydroxides (LDHs) of Co with trivalent cations decompose irreversibly to yield oxides with the spinel structure. Spinel formation is aided by the oxidation of Co(II) to Co(III) in the ambient atmosphere. When the decomposition is carried out under N-2, the oxidation of Co(II) is suppressed, and the resulting oxide has the rock salt structure. Thus, the Co-Al-CO32-/Cl- LDHs yield oxides of the type Co1- Al-x(2x/3)rectangle O-x/3, which are highly metastable, given the large defect concentration. This defect oxide rapidly reverts back to the original hydroxide on soaking in a Na2CO3 solution. Interlayer NO3- anions, on the other hand, decompose generating a highly oxidizing atmosphere, whereby the Co-Al-NO3- LDH decomposes to form the spinel phase even in a N-2 atmosphere. The oxide with the defect rock salt structure formed by the thermal decomposition of the Co-Fe-CO32- LDH under N2, on soaking in a Na2CO3 solution, follows a different kinetic pathway and undergoes a solution transformation into the inverse spinel Co(Co, Fe)(2)O-4. Fe3+ has a low octahedral crystal field stabilization energy and therefore prefers the tetrahedral coordination offered by the structure of the inverse spinel rather than the octahedral coordination of the parent LDH. Similar considerations do not hold in the case of Ga- and In-containing LDHs, given the considerable barriers to the diffusion of M3+ (M=Ga, In) from octahedral to tetrahedral sites owing to their large size. Consequently, the In-containing oxide residue reverts back to the parent hydroxide, whereas this reconstruction is partial in the case of the Ga-containing oxide. These studies show that the reversible thermal behavior offers a competing kinetic pathway to spinel formation. Suppression of the latter induces the reversible behavior in an LDH that otherwise decomposes irreversibly to the spinel.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The role of oxide surface chemical composition and solvent on ion solvation and ion transport of ``soggy sand'' electrolytes are discussed here. A ``soggy sand'' electrolyte system comprising dispersions of hydrophilic/hydrophobic functionalized aerosil silica in lithium perchlorate methoxy polyethylene glycol solution was employed for the study. Static and dynamic rheology measurements show formation of an attractive particle network in the case of the composite with unmodified aerosil silica (i.e., with surface silanol groups) as well as composites with hydrophobic alkane groups. While particle network in the composite with hydrophilic aerosil silica (unmodified) were due to hydrogen bonding, hydrophobic aerosil silica particles were held together via van der Waals forces. The network strength in the latter case (i.e., for hydrophobic composites) were weaker compared with the composite with unmodified aerosil silica. Both unmodified silica as well as hydrophobic silica composites displayed solid-like mechanical strength. No enhancement in ionic conductivity compared to the liquid electrolyte was observed in the case of the unmodified silica. This was attributed to the existence of a very strong particle network, which led to the ``expulsion'' of all conducting entities from the interfacial region between adjacent particles. The ionic conductivity for composites with hydrophobic aerosil particles displayed ionic conductivity dependent on the size of the hydrophobic chemical moiety. No spanning attractive particle network was observed for aerosil particles with surfaces modified with stronger hydrophilic groups (than silanol). The composite resembled a sol, and no percolation in ionic conductivity was observed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new soft-chemical transformation of layered perovskite oxides is described wherein K2O is sequentially extracted from the Ruddlesden-Popper (R-P) phase, K2La2Ti3O10 (I), yielding novel anion-deficient KLa2Ti3O9.5 (II) and La2Ti3O9 (III). The transformation occurs in topochemical reactions of the R-P phase I with PPh4Br and PBu4Br (Ph = phenyl; Bu = n-butyl). The mechanism involves the elimination of KBr accompanied by decomposition of PR4+ (R = phenyl or n-butyl) that extracts oxygen from the titanate. Analysis of the organic products of decomposition reveals formation of Ph3PO, Ph3P, and Ph-Ph for R = phenyl, and Bu3PO, Bu3P along with butane, butene, and octane for R = butyl. The inorganic oxides II and III crystallize in tetragonal structures (II: P4/mmm, a = 3.8335(1) angstrom, c = 14.334(1) angstrom; III: /4/ mmm, a = 3.8565(2) angstrom, c = 24.645(2) angstrom) that are related to the parent R-P phase. II is isotypic with the Dion-Jacobson phase, RbSr2Nb3O10, while III is a unique layered oxide consisting of charge-neutral La2Ti3O9 anion-deficient perovskite sheets stacked one over the other without interlayer cations. Interestingly, both II and III convert back to the parent R-P phase in a reaction with KNO3. While transformations of the R-P phases to other related layered/three-dimensional perovskite oxides in ion-exchange/metathesis/dehydration/reduction reactions are known, the simultaneous and reversible extraction of both cations and anions in the conversions K2La2Ti3O10 reversible arrow KLa2Ti3O9.5 reversible arrow La2Ti3O9 is reported here for the first time.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two segmented polyethylene oxides, SPEO-3 and SPEO-4, were prepared using a novel transetherification methodology. Their structures were confirmed by H-1 and C-13 NMR spectroscopy. The complexation of these SPEO's with alkali-metal ions in solution was investigated by C-13 NMR spectroscopy. The mole-fraction method was used to determine the complexation ratio of SPEO with LIClO4 at 25 degrees C, which showed that these formed 1:1 (polymer repeat unit/salt) complexes. The association constant, K, for the complex formation was calculated from the variation of the chemical shift values with salt concentration, using a standard nonlinear least-square fitting procedure. The maximum change in chemical shift (Delta delta) and the K values suggest that both SPEO-3 and SPEO-4 formed stronger complexes with lithium salts than with sodium salts. Unexpectedly, the K values were found to be different, when the variation of delta of different carbons was used in the fitting procedure. This suggests that several possible complexed species may be in equilibrium with the uncomplexed one. Structurally similar model compounds were also prepared and their complexation studies indicated that all of them also formed 1:1 complexes with Li salts. Interestingly, it was observed that the polymers gave higher K values suggesting the formation of more stable complexes in polymers when compared to the model analogues. (C) 2000 John Wiley & Sons, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report a simple modified polymeric precursor route for the synthesis of highly crystalline and homogenous nanoparticles of lanthanum calcium manganese oxide (LCMO). The LCMO phase formation was studied by thermal analysis, x-ray powder diffraction, and infrared spectroscopy at different stages of heating. These nanocrystallites (average particle size of 30 nm) possess ferromagnetic-paramagnetic transition temperature (T-c) of 300 K, nearly 50 K higher than that of a single crystal. The Rietveld analysis of the powder x-ray diffraction data of the nanopowders reveals significant lattice contraction and reduction in unit cell anisotropy-these structural changes are correlated to the enhancement in T-c.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The increase in optical band gap (photo bleaching) due to light illumination was studied at room temperature as well as at low (4.2 K) temperature for Sb/As2S3 multilayered film of 640 nm thickness by Fourier Transform Infrared Technique. The interdiffusion of Sb into As2S3 matrix results the formation of Sb-As2S3 ternary solid solutions which is explained by the change in optical band gap (E-g), absorption coefficient (alpha), Tauc parameter (B-1/2), Urbach edge (E-e). At the same time, photo darkening phenomena was observed in (As2S3)(0.93)Sb-0.07 film of same thickness both at low and room temperatures. From our X-ray Photoelectron Spectroscopy measurements,we are able to show that some of the As-As, S-S and Sb-Sb bonds are converted into As-S and S-Sb bonds in case of multilayers. We found that the energetically favoured heteropolar bond formation take place by a phonon-assisted mechanism using the lone pair pi electrons of S-2(0). But in case of (As2S3)(0.93)Sb-0.02 film, the homopolar bonds are playing a major role. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes a theoretical model for the growth of titanium oxide by thermal oxidation of titanium. It is shown that this model can explain the formation of layers of different oxides of titanium and the changes in these layers with variations in the conditions of oxidation. Some experimental X-ray diffraction results which support the model are also given.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the new oxide superconductors, structure and oxygen stoichiometry play the most crucial role. Thus, all the high-temperature oxide superconductors are orthorhombic perovskites with low-dimensional features. Oxygen stoichiometry in YBa2Cu3O7-δ has an important bearing on the structure as well as superconductivity. This is equally true in the La3-xBa3+xCu 6O14+δ system of which only the 123 oxide (x = 1) with the orthorhombic structure shows high Tc. Orthorhombicity though not essential, is generally found ; it is necessary for the formation of twins. The nature of oxygen and copper in the cuprates has been examined by electron spectroscopy. Copper in these cuprates is only in 1 + and 2 + states. It seems likely that oxygen holes are responsible for superconductivity of the cuprates as well as Ba(Bi, Pb)O3. High Tc superconductivity is also found in oxides of the Bi-(Ca, Sr)-Cu-O and related oxides possessing Cu-O sheets.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Gibbs' energy change for the reaction, 3CoO (r.s.)+1/2O2(g)→Co3O4(sp), has been measured between 730 and 1250 K using a solid state galvanic cell: Pt, CuO+Cu2O|(CaO)ZrO2|CoO+Co3O4,Pt. The emf of this cell varies nonlinearly with temperature between 1075 and 1150 K, indicating a second or higher order phase transition in Co3O4around 1120 (±20) K, associated with an entropy change of ∼43 Jmol-1K-1. The phase transition is accompanied by an anomalous increase in lattice parameter and electrical conductivity. The cubic spinel structure is retained during the transition, which is caused by the change in CO+3 ions from low spin to high spin state. The octahedral site preference energy of CO+3 ion in the high spin state has been evaluated as -24.8 kJ mol-1. This is more positive than the value for CO+2 ion (-32.9 kJ mol-1). The cation distribution therefore changes from normal to inverse side during the phase transition. The transformation is unique, coupling spin unpairing in CO+3 ion with cation rearrangement on the spinel lattice, DTA in pure oxygen revealed a small peak corresponding to the transition, which could be differentiated from the large peak due to decomposition. TGA showed that the stoichiometry of oxide is not significantly altered during the transition. The Gibbs' energy of formation of Co3O4 from CoO and O2 below and above phase transition can be represented by the equations:ΔG0=-205,685+170.79T(±200) J mol-1(730-1080 K) and ΔG0=-157,235+127.53T(±200) J mol-1(1150-1250 K).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Microwave switches operating in the X band were designed and fabricated using amorphous chalcogenide semiconductors of composition GexTeyAsz. Threshold devices were shown to operate as microwave modulators at modulation frequencies of up to 100 MHz. No delay time was observed at the highest frequency although the modulation efficiency decreased above 10 MHz owing to the finite recovery time which was approximately 0.3 × 10−8s. The devices can also be used as variolossers, the insertion loss being 0.5 dB in the OFF state and increasing on switching from 5 dB at 1 mA device current to 18 dB at 100 mA.The behaviour of the threshold switches can be explained in terms of the formation of a conducting filament in the ON state with a constant current density of 2 × 104Acm−2 that is shunted by the device capacitance. The OFF state conductivity σ varies as ωn (0.5 < n < 1) which is characteristic of hopping in localized states. However, there was evidence of a decrease in n or a saturation of the conductivity at high frequencies.As a result of phase separation memory switches require no holding current in the ON state and may be used as novel latching semiconductor phase-shifters.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The electrical switching behavior of amorphous Al23Te77 thin film devices, deposited by flash evaporation, has been studied in co-planar geometry. It is found that these samples exhibit memory type electrical switching. Scanning Electron Microscopic studies show the formation of a crystalline filament in the electrode region which is responsible for switching of the device from high resistance OFF state to low resistance ON state. It is also found that the switching behavior of thin film Al-Te samples is similar to that of bulk samples, with the threshold fields of bulk samples being higher. This has been understood on the basis of higher thermal conductance in bulk, which reduces the Joule heating and temperature rise in the electrode region. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We demonstrate a robust strategy for obtaining a high dispersion of ultrafine Pt and PtRu nanoparticles on graphene by exploiting the nucleation of a metal precursor phase on graphite oxide surfaces. Our method opens up new possibilities to engineer graphene-based hybrids for applications in multifunctional nanoscale devices.