97 resultados para Nitroxide Radicals
Resumo:
Ultrasonication of aqueous KI solution is known to yield I2 due to reaction of iodide ions with hydroxyl radicals, which in turn are generated due to cavitation. Based on this conceptual framework, a model has been developed to predict the rate of iodine formation for KI solutions of various concentrations under different gas atmospheres. The model follows the growth and collapse of a gas—vapour cavity using the Rayleigh—Plesset bubble dynamics equation. The bubble is assumed to behave isothermally during its growth phase and a part of the collapse phase. Thereafter it is assumed to collapse adiabatically, yielding high temperatures and pressures. Thermodynamic equilibrium is assumed in the bubble at the end of collapse phase. The contents of the bubble are assumed to mix with the liquid, and the reactor contents are assumed to be well stirred. The model has been verified by conducting experiments with KI solutions of different concentrations and using different gas atmospheres. The model not only explains these results but also the existence of a maximum when Ar---O2 mixtures of different compositions are employed.
Resumo:
Ferrocenyl conjugates 2-ferrocenylimidazophenanthroline (1) and 2-ferrocenylimidazophenanthrene (2) were prepared, characterized, and their photoinduced DNA cleavage and photocytotoxic activity were studied. 2-Phenylimidazophenanthroline (3) was used as a control species. Compound 2 was characterized by X-ray crystallography. The interaction of the compounds with double-stranded calf thymus DNA (CT DNA) was studied. The compounds show good binding affinity to CT DNA with K-b values of approximately 10(5) M-1. Thermal denaturation data suggest the groove binding nature of the compounds. The redox-active compounds show poor chemical nuclease activity in the presence of hydrogen peroxide and glutathione (GSH). Compound 1 exhibits significant DNA photocleavage activity in visible light of 476 and 532 nm. Compound 3 shows only moderate DNA cleavage activity. The positive effect of the ferrocenyl moiety is demonstrated by the DNA photocleavage data. Mechanistic investigations reveal the formation of superoxide as well as hydroxyl radicals as the active species. The photocytotoxicity of the compounds in HeLa cells was studied upon irradiation with visible light (400-700 nm). Compound 1 shows efficient photocytotoxic activity with an IC50 value of 13 mu M, while compounds 2 and 3 are less active with IC50 values of > 50 and 22 mu M, respectively.
Resumo:
Oxovanadium(IV) complexes VO(N-N-N)(N-N)](NO3)(2) (1-4) of (4'-phenyl)-2,2': 6',2 `'-terpyridine (ph-tpy in 1 and 2) or (4'-pyrenyl)-2,2':6',2 `'-terpyridine (py-tpy in 3 and 4) having N-N as 1,10-phenanthroline (phen in 1 and 3) or dipyrido3,2-a:2',3'-c]phenazine (dppz in 2 and 4) are prepared and characterized. The crystal structure of 1 has VO2+ group in VN5O coordination geometry. The terpyridine ligand coordinates in a meridional binding mode. The phen ligand displays a chelating mode of binding with an N-donor site trans to the vanadyl oxo group. The complexes show a d-d band in the range of 710-770 nm in aqueous DMF (4:1 v/v). The complexes exhibit an irreversible V-IV/V-III redox response near -1.0 V vs. SCE in aqueous DMF/0.1 M KCl. The complexes bind to CT DNA giving K-b values within 3.5 x 10(5) to 1.2 x 10(6) M-1. The complexes show poor chemical nuclease activity in dark. Complexes 2-4 show photonuclease activity in UV-A light of 365 nm forming O-1(2) and (OH)-O-center dot. Complex 4 shows DNA photocleavage activity at near-IR light of 785 nm forming (OH)-O-center dot radicals. Complexes 2 and 4 show significant photocytotoxicity in HeLa cancer cells. Uptake of the complexes in HeLa cells, studied by fluorescence imaging, show predominantly cytosolic localization inside the cells.
Resumo:
Ultrasonication of aqueous KI solution is known to yield I2 due to reaction of iodide ions with hydroxyl radicals, which in turn are generated due to cavitation. Based on this conceptual framework, a model has been developed to predict the rate of iodine formation for KI solutions of various concentrations under different gas atmospheres. The model follows the growth and collapse of a gas-vapour cavity using the Rayleigh-Plesset bubble dynamics equation. The bubble is assumed to behave isothermally during its growth phase and a part of the collapse phase. Thereafter it is assumed to collapse adiabatically, yielding high temperatures and pressures. Thermodynamic equilibrium is assumed in the bubble at the end of collapse phase. The contents of the bubble are assumed to mix with the liquid, and the reactor contents are assumed to be well stirred. The model has been verified by conducting experiments with KI solutions of different concentrations and using different gas atmospheres. The model not only explains these results but also the existence of a maximum when Ar-O2 mixtures of different compositions are employed.
Resumo:
The physico-chemical, photo-physical and micro-structural properties responsible for the strikingly different photocatalytic behavior of combustion-prepared TiO2 (c.TiO2) and Degussa P25 (d.TiO2) samples are elucidated in this study. Electron microscopy and selected area electron diffraction micrographs revealed that the two samples exhibited different morphologies. The grains of c.TiO2 were spherical and comprised of 5-6 nm size primary particle. On the other hand, d.TiO2 consisted of large (0.5-3.0 mu m) size and irregular shape aggregates having primary particles of 15-40 nm cross-sectional diameter. The ESR study revealed that the presence of certain defect states in c.TiO2 helped in stabilization of O-. and Ti3+-OH type species during room-temperature UV-irradiation. No such paramagnetic species were however formed over d.TiO2 under similar conditions. C1s and Ti 2p XPS spectra provide evidence for the presence of some lattice vacancies in c.TiO2 and also for the bulk Ti4+ -> Ti3+ conversion during its UV-irradiation. Compared to d.TiO2, c.TiO2 displayed considerably higher activity for discoloration of methyl orange but very poor activity for splitting of water, both under UV and visible light radiations. This is attributed to enhanced surface adsorption of dye molecules over c.TiO2, because of its textural features and also the presence of photo-active ion-radicals. On the other hand, the poor activity of c.TiO2 for water splitting is related to certain defect-induced inter-band charge trapping states in the close vicinity of valence and conduction bands of c.TiO2, as revealed by thermoluminescence spectroscopy. Further, the dispersion of nanosize gold particles gave rise to augmented activity of both the catalysts, particularly for water splitting. This is explained by the promotional role of Au-0 or Au-0/TiO2 interfacial sites in the adsorption and charge-adsorbate interaction processes. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Iron(III) complexes FeL(B)] (1-5) of a tetradentate trianionic phenolate-based ligand (L) and modified dipyridophenazine bases (B), namely, dipyrido-6,7,8,9-tetrahydrophenazine (dpqC in 1), dipyrido3,2-a:2',3'-c]phenazine-2-carboxylic acid (dppzc in 2), dipyrido3,2-a:2',3'-c]phenazine-11-sulfonic acid (dppzs in 3), 7-aminodipyrido3,2-a:2',3'-c]phenazine (dppza in 4) and benzoi]dipyridro3,2-a:2',3'-c]phenazine (dppn in 5), have been synthesized, and their photocytotoxic properties studied along with their dipyridophenazine analogue (6). The complexes have a five. electron paramagnetic iron(III) center, and the Fe(III)/Fe(II) redox couple appears at about 0.69 V versus SCE in DMF-0.1 M TBAP. The physicochemical data also suggest that the complexes possess similar structural features as that of its parent complex FeL(dppz)] with FeO3N3 coordination in a distorted octahedral geometry. The DNA-complex and protein-complex interaction studies have revealed that the complexes interact favorably with the biomolecules, the degree of which depends on the nature of the substituents present on the dipyridophenazine ring. Photocleavage Of pUC19 DNA by the complexes has been studied using visible light of 476, 530, and 647 nm wavelengths. Mechanistic investigations with inhibitors show formation of HO center dot radicals via a photoredox pathway. Photocytotoxicity study of the complexes in HeLa cells has shown that the dppn complex (5) is highly active in causing cell death in visible light with sub micromolar IC50 value. The effect of substitutions and the planarity of the phenazine moiety on the cellular uptake are quantified by determining the total Cellular iron content using the inductively coupled plasma-optical emission spectrometry (ICP-OES) technique. The cellular uptake increases marginally with an increase in the hydrophobicity of the dipyridophenazine ligands whereas complex 3 with dppzs shows very high uptake. Insights into the cell death mechanism by the dppn complex 5, obtained through DAFT nuclear staining in HeLa cells, reveal a rapid programmed cell death mechanism following photoactivation of complex 5 with visible light. The effect of substituent on the DNA photocleavage activity of the complexes has been rationalized from the theoretical studies.
Resumo:
We describe the use of poly(alpha-methylstyrene peroxide) (P alpha MSP), an alternating copolymer of alpha-methylstyrene and oxygen, as initiator for the radical polymerization of vinyl monomers. Thermal decomposition of P alpha MSP in 1,4-dioxane follows first-order kinetics with an activation energy (E(a)) of 34.6 kcal/mol. Polymerization of methyl methacrylate (MMA) and styrene using P alpha MSP as an initiator was carried out in the temperature range 60-90 degrees C. The kinetic order with respect to the initiator and the monomer was close to 0.5 and 1.0, respectively, for both monomers. The E(a) for the polymerization was 20.6 and 22.9 kcal/mol for MMA and styrene, respectively. The efficiency of P alpha MSP was found to be in the range 0.02-0.04. The low efficiency of P alpha MSP was explained in terms of the unimolecular decomposition of the alkoxy radicals which competes with primary radical initiation. The presence of peroxy segments in the main chain of PMMA and polystyrene was confirmed from spectroscopic and DSC studies. R(i)'/2I values for P alpha MSP compared to that of BPO at 80 degrees C indicate that P alpha MSP can be used as an effective high-temperature initiator.
Resumo:
Reactions of cyanide radicals with alkanes have been investigated by ab initio methods. It is found that the potential energy surface for reaction of CN with a primary C-H bond in methane has a small positive barrier while reactions of CN with a secondary and a tertiary C-H bond in alkanes are barrierless at the correlated level. A simple explanation for the obtained negative temperature dependence of rate constants for reactions of CN with a secondary and a tertiary C-H bond in alkanes are given in terms of the collision theory of bimolecular reactions. It is shown that for barrierless reactions the negative temperature dependence of the rate constants is attributed to the variation of the pre-exponential factor with temperature.
Resumo:
The vast biodiversity of nature provides bioactive compounds that may be useful in the fight against chronic diseases. This study was designed to investigate the protective effects of the ethanol extract of Spirulina laxissima West (Pseudanabaenaceae) (EESL) against carbon tetrachloride (CCl4) induced hepatotoxicities in rats. Male albino rats of Sprague-Dawley strain were treated orally with the ethanol extract of S. laxissima (50, 100 mg kg(-1) body wt.) 1 h before each CCl4 administration. The ethanol extract of S. laxissima showed the maximum antioxidant property in vitro. There were statistically significant losses in the activities of antioxidant enzymes and an increase in TBARS and liver function marker enzymes in the serum of the CCl4-treated group compared with the control group. However, all the tested groups were able to counteract these effects. The antioxidant activity of the extracts might be attributable to its proton-donating ability, as evidenced by DPPH. In the present study, the decline in the level of antioxidant observed in CCl4-treated rats is a clear manifestation of excessive formation of radicals and activation of the lipid peroxidation system resulting in tissue damage. The significant increases in the concentration of antioxidant enzymes in tissues of animals treated with CCl4 + EESL indicate the antioxidant effect of EESL. This study suggests that EESL can protect the liver against CCl4-induced oxidative damage in rats, and the hepatoprotective effect might be correlated with its antioxidant and radical-scavenging effects.
Resumo:
Oxovanadium(IV) complexes VO(L)(B)](ClO4) (1-3) of N-2-pyridylmethylidine-2-hydroxyphenylamine (HL) Schiff base and phenanthroline bases (B), viz. 1,10-phenanthroline (phen in 1), dipyrido3,2-d: 2',3'-f] quinoxaline (dpq in 2) or dipyrido3,2-a: 2',3'-c] phenazine (dppz in 3), were prepared, characterized and their DNA binding property, photo-induced DNA cleavage activity and photocytotoxicity in HeLa cells studied. The crystal structure of 1 shows the presence of a VO2+ moiety in VO2N4 coordination geometry. The complexes show a d-d band at similar to 830 nm in DMF. The complexes display an oxidative V(V)-V(IV) response near 0.5 V versus SCE and a reductive V(IV)/V(III) response near -0.65 V in DMF -0.1 M TBAP. The complexes that are avid binders to CT DNA giving K-b values within 7.1 x 10(4) to 3.2 x 10(5) M-1, do not show any significant chemical nuclease activity in presence of 3-mercaptopropionic acid or glutathione. The dpq and dppz complexes are photocleavers of pUC19 DNA in UV-A light of 365 nm forming both O-1(2) and (OH)-O-center dot radicals and in near-IR light of 785 nm forming (OH)-O-center dot radicals. The dppz complex exhibits photocytotoxicity in visible light in HeLa cells (IC50 = 6.8 mu M). Flow-cytometric study on this complex shows a high sub-G1 phase in light compared to dark indicating PDT effect. (C) 2011 Elsevier B. V. All rights reserved.
Resumo:
Thermal oxidative polymerization of alpha-methylstyrene (AMS) has been studied at various temperatures(45-70 degrees C) and pressures (50-400 psi). Due to its high electron dense double bond, it undergoes thermal oxidative polymerization even at low temperatures fairly easily. The major products are poly(alpha-methylstyrene peroxide) (PMSP), and its decomposition products are acetophenone and formaldehyde. Above 45 degrees C the rate of polymerization increases sharply at a particular instant showing an ''autoacceleration'' with the formation of a knee point. The ''autoacceleration'' is supported from the fact that the plot, of R-p vs T shows a rapid rise, and the plot of ln R-p vs 1/T is non-Arrhenius. The occurrence of autoacceleration is explained on the basis of acetophenone-induced cleavage of PMSP during polymerization, generating more initiating alkoxy radicals, which subsequently leads to the rapid rise in the rate of polymerization. The mechanism of autoacceleration is supported by the change in. order, activation energy, and activation volume before and after the knee point.
Resumo:
Oxidative damage, through increased production of free radicals, is believed to be involved in UV-induced cataractogenesis (eye lens opacification). The possibility of UVB radiation causing damage to important lenticular enzymes was assessed by irradiating 3 months old rat lenses (in RPMI-1640 medium) at 300 nm (100 mu Wcm(-2)) for 24 h, in the absence and presence of ascorbic acid, alpha-tocopherol acetate and beta-carotene. UVB irradiation resulted in decreased activities of hexokinase, glucose-6-phosphate dehydrogenase, aldose reductase, and Na, K- ATPase by 42, 40, 44 and 57% respectively. While endopeptidase activity (229%) and lipid peroxidation (156%) were increased, isocitrate dehydrogenase activity was not altered on irradiation. In the presence of externally added ascorbic acid, tocopherol and beta-carotene (separately) to the medium, the changes in enzyme activities (except endopeptidase) and increased lipid peroxidation, due to UVB exposure, were prevented. These results suggest that UVB radiation exerts oxidative damage on lens enzymes and antioxidants were protective against this damage.
Resumo:
N,N'-Bis(ferrocenylmethylidene)-p-phenylenediamine 1 and N-(ferrocenylmethylidene) aniline 2 are readily synthesized by Schiff base condensation of appropriate units. Iodine (I-2), 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ), tetrachloro-1,4-benzoquinone (CA), tetracyanoethylene (TCNE) and 7,7,8,8-tetracyanoquinodimethane (TCNQ) form charge transfer complexes with 1 and 2. IR spectroscopy suggests an increase in the amount of charge transferred from the ferrocenyl ring to the oxidant in the order, I-2 < CA < TCNQ < TCNE approximate to DDQ. EPR spectra of the oxidized binuclear complexes are indicative of localized species containing iron- and carbon-centered radicals. The Mossbauer spectrum of the iodine oxidized complex of 1 reveals the presence of both Fe(III) and Fe(II) centers. Variable temperature magnetic and Mossbauer studies show that the ratio of Fe(III)/Fe(II) centers varies as a function of temperature. The larger Fe(II)/Fe(III) ratio at lower temperatures is best explained by a retro charge transfer from the iodide to the iron(III) metal center. There is negligible solvent effect on the formation of the iodine oxidized charge transfer complex of 1. (C) 1999 Elsevier Science S.A. All rights reserved.
Resumo:
A unique phenomenon of ‘autoacceleration’ was observed in a free radical polymerization of vinyl monomers and oxygen. Unlike the well known autoacceleration phenomenon in polymerization processes, this unusual phenomenon is not readily conceivable in terms of solution viscosity based reasoning. Surprisingly, we have observed manifestation of this new autoacceleration during free radical oxidative polymerization of some vinyl monomers at low conversions, where generally the polymerization reaction is zero order, the conversion–time plot are linear and viscosity effects are negligible. In the present paper, we interpret the mechanism of this new autoacceleration phenomenon on the basis of reactivity of the propagating radicals in terms of heat of formation data.
Resumo:
Ferrocene-conjugated L-tryptophan (L-Trp) reduced Schiff base (Fc-TrpH) copper(II) complexes [Cu(Fc-Trp)(L)](ClO(4)) of phenanthroline bases (L), viz. 2,2'-bipyridine (bpy in 1), 1,10-phenanthroline (phen in 2), dipyrido[3,2-d:2',3'-f]quinoxaline (dpq in 3), and dipyrido[3,2-a:2',3'-c]phenazine (dppz in 4), were prepared and characterized and their photocytotoxicity studied. Cationic reduced Schiff base (Ph-TrpH) complexes [Cu(Ph-Trp)(L)(H(2)O)] (ClO(4)) (L = phen in 5; dppz in 6) having the ferrocenyl moiety replaced by a phenyl group and the Zn(II) analogue (7) of complex 4 were prepared and used as control species. The crystal structures of 1 and 5 with respective square-planar CuN(3)O and square-pyramidal CuN(3)O(2) coordination geometry show significantly different core structures. Complexes 1-4 exhibit a Cu(II)-Cu(I) redox couple near -0.1 V and the Fc(+)-Fc couple at similar to 0.5 V vs SCE in DMF-0.1 M [Bu(4)(n)N] (ClO(4)) (Fc = ferrocenyl moiety). The complexes display a copper(II)-based d-d band near 600 nm and a Fc-centered band at similar to 450 nm in DMF-Tris-HCl buffer. The complexes are efficient binders to calf thymus DNA. They are synthetic chemical nucleases in the presence of thiol or H(2)O(2), forming hydroxyl radicals. The photoactive complexes are cleavers of pUC19 DNA in visible light, forming hydroxyl radicals. Complexes 2-6 show photocytotoxicity in HeLa cancer cells, giving IC(50) values of 4.7, 10.2, 1.3, 4.8, and 4.3 mu M, respectively, in visible light with the appearance of apoptotic bodies. The complexes also show photocytotoxicity in MCF-7 cancer cells. Nuclear chromatin cleavage has been observed with acridine orange/ethidium bromide (AO/EB) dual staining with complex 4 in visible light. The complexes induce caspase-independent apoptosis in the HeLa cells.