56 resultados para Nineteen Eighty-Four
Resumo:
The issue of intermittency in numerical solutions of the 3D Navier-Stokes equations on a periodic box 0, L](3) is addressed through four sets of numerical simulations that calculate a new set of variables defined by D-m(t) = (pi(-1)(0) Omega(m))(alpha m) for 1 <= m <= infinity where alpha(m) = 2m/(4m - 3) and Omega(m)(t)](2m) = L-3 integral(v) vertical bar omega vertical bar(2m) dV with pi(0) = vL(-2). All four simulations unexpectedly show that the D-m are ordered for m = 1,..., 9 such that Dm+1 < D-m. Moreover, the D-m squeeze together such that Dm+1/D-m NE arrow 1 as m increases. The values of D-1 lie far above the values of the rest of the D-m, giving rise to a suggestion that a depletion of nonlinearity is occurring which could be the cause of Navier-Stokes regularity. The first simulation is of very anisotropic decaying turbulence; the second and third are of decaying isotropic turbulence from random initial conditions and forced isotropic turbulence at fixed Grashof number respectively; the fourth is of very-high-Reynolds-number forced, stationary, isotropic turbulence at up to resolutions of 4096(3).
Resumo:
This paper deals with an optimization based method for synthesis of adjustable planar four-bar, crank-rocker mechanisms. For multiple different and desired paths to be traced by a point on the coupler, a two stage method first determines the parameters of the possible driving dyads. Then the remaining mechanism parameters are determined in the second stage where a least-squares based circle-fitting procedure is used. Compared to existing formulations, the optimization method uses less number of design variables. Two numerical examples demonstrate the effectiveness of the proposed synthesis method. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
An anthracene-containing poly(arylene-ethynylene)-alt-poly(arylene-vinylene) (PAE-PAV) of general constitutional unit (PhCCAnthrCCPhCHCHAnthrCHCH)(n) bearing two 2-ethylhexyloxy solubilizing side chains on each phenylene (Ph) unit has been synthesized and characterized. The basic electrochemical characterization was done, showing the existence of two non-reversible oxidation and one reversible reduction peaks. The optical properties, the real and imaginary part of the dielectric function, were probed using spectroscopic ellipsometry (SE). The vibrational structure of the undoped/doped polymer was investigated using Fourier transformed infrared spectroscopy. A strong change in the polaronic absorption was observed during the doping, which after modeling revealed the existence of two separated transitions. The optical changes upon doping were additionally recorded using the SE technique. Similar to the results from FT-IR spectroscopy, two new in-the-gap absorptions were found. Moreover, the electrical conductivity as well as the mobility of positive carriers were measured. In the undoped state, the conductivity of the polymer was found to be below the detection limit (
Resumo:
A transmission scheme based on the Alamouti code, which we call the Li-Jafarkhani-Jafar (LJJ) scheme, was recently proposed for the 2 x 2 X-network i.e., two-transmitter (Tx) two-receiver X-network] with two antennas at each node. This scheme was claimed to achieve a sum degrees of freedom (DoF) of 8/3 and also a diversity gain of two when fixed finite constellations are employed at each Tx. Furthermore, each Tx required the knowledge of only its own channel unlike the Jafar-Shamai scheme which required global CSIT to achieve the maximum possible sum DoF of 8/3. In this paper, we extend the LJJ scheme to the 2 x 2 X-network with four antennas at each node. The proposed scheme also assumes only local channel knowledge at each Tx. We prove that the proposed scheme achieves the maximum possible sum DoF of 16/3. In addition, we also prove that, using any fixed finite constellation with appropriate rotation at each Tx, the proposed scheme achieves a diversity gain of at least four.
Resumo:
Since the time of Kirkwood, observed deviations in magnitude of the dielectric constant of aqueous protein solution from that of neat water (similar to 80) and slower decay of polarization have been subjects of enormous interest, controversy, and debate. Most of the common proteins have large permanent dipole moments (often more than 100 D) that can influence structure and dynamics of even distant water molecules, thereby affecting collective polarization fluctuation of the solution, which in turn can significantly alter solution's dielectric constant. Therefore, distance dependence of polarization fluctuation can provide important insight into the nature of biological water. We explore these aspects by studying aqueous solutions of four different proteins of different characteristics and varying sizes, chicken villin headpiece subdomain (HP-36), immunoglobulin binding domain protein G (GB1), hen-egg white lysozyme (LYS), and Myoglobin (MYO). We simulate fairly large systems consisting of single protein molecule and 20000-30000 water molecules (varied according to the protein size), providing a concentration in the range of similar to 2-3 mM. We find that the calculated dielectric constant of the system shows a noticeable increment in all the cases compared to that of neat water. Total dipole moment auto time correlation function of water < dM(W) (0)delta M-W (t) > is found to be sensitive to the nature of the protein. Surprisingly, dipole moment of the protein and total dipole moment of the water molecules are found to be only weakly coupled. Shellwise decomposition of water molecules around protein reveals higher density of first layer compared to the succeeding ones. We also calculate heuristic effective dielectric constant of successive layers and find that the layer adjacent to protein has much lower value (similar to 50). However, progressive layers exhibit successive increment of dielectric constant, finally reaching a value close to that of bulk 4-5 layers away. We also calculate shellwise orientational correlation function and tetrahedral order parameter to understand the local dynamics and structural re-arrangement of water. Theoretical analysis providing simple method for calculation of shellwise local dielectric constant and implication of these findings are elaborately discussed in the present work. (C) 2014 AIP Publishing LLC.
Resumo:
Damage mechanisms in unidirectional (UD) and bi-directional (BD) woven carbon fiber reinforced polymer (CFRP) laminates subjected to four point flexure, both in static and fatigue loadings, were studied. The damage progression in composites was monitored by observing the slopes of the load vs. deflection data that represent the stiffness of the given specimen geometry over a number of cycles. It was observed that the unidirectional composites exhibit gradual loss in stiffness whereas the bidirectional woven composites show a relatively quicker loss during stage II of fatigue damage progression. Both, the static and the fatigue failures in unidirectional carbon fiber reinforced polymer composites originates due to generation of cracks on compression face while in bidirectional woven composites the damage ensues from both the compression and the tensile faces. These observations are supported by a detailed fractographic analysis.
Resumo:
We present the results of a theoretical study of a four-level atomic system in vee + ladder configuration using a density matrix analysis. The absorption and dispersion profiles are derived for a weak probe field and for varying strengths of the two strong control fields. For specificity, we choose energy levels of Rb-87, and present results for both stationary atoms and moving atoms in room temperature vapor. An electromagnetically induced absorption (EIA) peak with negative dispersion is observed at zero probe de-tuning when the control fields have equal strengths, which switches to electromagnetically induced transparency (ET) with positive dispersion (due to splitting of the EIA peak) when the control fields are unequal. There is significant linewidth narrowing in thermal vapor. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
In this paper, a multilevel dodecagonal voltage space vector structure with nineteen concentric dodecagons is proposed for the first time. This space vector structure is achieved by cascading two sets of asymmetric three-level inverters with isolated H-bridges on either side of an open-end winding induction motor. The dodecagonal structure is made possible by proper selection of dc link voltages and switching states of the inverters. The proposed scheme retains all the advantages of multilevel topologies as well as the advantages of dodecagonal voltage space vector structure. In addition to that, a generic and simple method for calculation of pulsewidth modulation timings using only sampled reference values (v(alpha) and v(beta)) is proposed. This enables the scheme to be used for any closed-loop application such as vector control. In addition, a new method of switching technique is proposed, which ensures minimum switching while eliminating the fifth-and seventh-order harmonics and suppressing the eleventh and thirteenth harmonics, eliminating the need for bulky filters. The motor phase voltage is a 24-stepped wave-form for the entire modulation range thereby reducing the number of switchings of the individual inverter modules. Experimental results for steady-state operation, transient operation, including start-up have been presented and the results of fast Fourier transform analysis is also presented for validating the proposed concept.
Resumo:
We show here a 2(Omega(root d.log N)) size lower bound for homogeneous depth four arithmetic formulas. That is, we give an explicit family of polynomials of degree d on N variables (with N = d(3) in our case) with 0, 1-coefficients such that for any representation of a polynomial f in this family of the form f = Sigma(i) Pi(j) Q(ij), where the Q(ij)'s are homogeneous polynomials (recall that a polynomial is said to be homogeneous if all its monomials have the same degree), it must hold that Sigma(i,j) (Number of monomials of Q(ij)) >= 2(Omega(root d.log N)). The above mentioned family, which we refer to as the Nisan-Wigderson design-based family of polynomials, is in the complexity class VNP. Our work builds on the recent lower bound results 1], 2], 3], 4], 5] and yields an improved quantitative bound as compared to the quasi-polynomial lower bound of 6] and the N-Omega(log log (N)) lower bound in the independent work of 7].
Resumo:
This work intends to demonstrate the effect of geometrically non-linear cross-sectional analysis of certain composite beam-based four-bar mechanisms in predicting the three-dimensional warping of the cross-section. The only restriction in the present analysis is that the strains within each elastic body remain small (i.e., this work does not deal with materials exhibiting non-linear constitutive laws at the 3-D level). Here, all component bars of the mechanism are made of fiber-reinforced laminates. They could, in general, be pre-twisted and/or possess initial curvature, either by design or by defect. Each component of the mechanism is modeled as a beam based on geometrically non-linear 3-D elasticity theory. The component problems are thus split into 2-D analyses of reference beam cross-sections and non-linear 1-D analyses along the three beam reference curves. The splitting of the three-dimensional beam problem into two- and one-dimensional parts, called dimensional reduction, results in a tremendous savings of computational effort relative to the cost of three-dimensional finite element analysis, the only alternative for realistic beams. The analysis of beam-like structures made of laminated composite materials requires a much more complicated methodology. Hence, the analysis procedure based on Variational Asymptotic Method (VAM), a tool to carry out the dimensional reduction, is used here. The representative cross-sections of all component bars are analyzed using two different approaches: (1) Numerical Model and (2) Analytical Model. Four-bar mechanisms are analyzed using the above two approaches for Omega = 20 rad/s and Omega = pi rad/s and observed the same behavior in both cases. The noticeable snap-shots of the deformation shapes of the mechanism about 1000 frames are also reported using commercial software (I-DEAS + NASTRAN + ADAMS). The maximum out-of-plane warping of the cross-section is observed at the mid-span of bar-1, bar-2 and bar-3 are 1.5 mm, 250 mm and 1.0 mm, respectively, for t = 0:5 s. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
A synthetic strategy is described for the co-crystallization of four-and five-component molecular crystals, based on the fact that if any particular chemical constituent of a lower cocrystal is found in two different structural environments, these differences may be exploited to increase the number of components in the solid. 2-Methylresorcinol and tetramethylpyrazine are basic template molecules that allow for further supramolecular homologation. Ten stoichiometric quaternary cocrystals and one quintinary cocrystal with some solid solution character are reported. Cocrystals that do not lend themselves to such homologation are termed synthetic dead ends.