245 resultados para Negative mass bubbles
Resumo:
TWIK-related K+ channel TREK1, a background leak K+ channel, has been strongly implicated as the target of several general and local anesthetics. Here, using the whole-cell and single-channel patch-clamp technique, we investigated the effect of lidocaine, a local anesthetic, on the human (h) TREK1 channel heterologously expressed in human embryonic kidney 293 cells by an adenoviral-mediated expression system. Lidocaine, at clinical concentrations, produced reversible, concentration-dependent inhibition of hTREK1 current, with IC50 value of 180 mu M, by reducing the single-channel open probability and stabilizing the closed state. We have identified a strategically placed unique aromatic couplet (Tyr352 and Phe355) in the vicinity of the protein kinase A phosphorylation site, Ser348, in the C-terminal domain (CTD) of hTREK1, that is critical for the action of lidocaine. Furthermore, the phosphorylation state of Ser348 was found to have a regulatory role in lidocaine-mediated inhibition of hTREK1. It is interesting that we observed strong intersubunit negative cooperativity (Hill coefficient = 0.49) and half-of-sites saturation binding stoichiometry (half-reaction order) for the binding of lidocaine to hTREK1. Studies with the heterodimer of wild-type (wt)-hTREK1 and Delta 119 C-terminal deletion mutant (hTREK1(wt)-Delta 119) revealed that single CTD of hTREK1 was capable of mediating partial inhibition by lidocaine, but complete inhibition necessitates the cooperative interaction between both the CTDs upon binding of lidocaine. Based on our observations, we propose a model that explains the unique kinetics and provides a plausible paradigm for the inhibitory action of lidocaine on hTREK1.
Resumo:
The paper studies the influence of vectored suction or injection on the flow and heat transfer at the stagnation point of a two-dimensional body (a cylinder) and an axisymmetric body (a sphere) with allowance for the effects of variable gas properties. The analysis is based on the boundary-layer equations in dimensionless form for the steady compressible fluid with variable properties in the stagnation region of a two-dimensional or an axisymmetric body with tangential and normal surface mass transfer under similarity requirements. It is shown that the variation of the density-viscosity product across the boundary layer has a strong effect on the skin friction and heat transfer. This gives rise to a point of inflection which can be removed by suction and by increasing the wall temperature. The skin friction and heat transfer are significantly affected by the pressure gradient parameter.
Resumo:
The theoretical analysis, based on the perturbation technique, of ion-acoustic waves in the vicinity of a Korteweg-de Vries (K-dV) equation derived in a plasma with some negative ions has been made. The investigation shows that the negative ions in plasma with isothermal electrons introduced a critical concentration at which the ion-acoustic wave plays an important role of wave-breaking and forming a precursor while the plasma with non-isothermal electrons has no such singular behaviour of the wave. These two distinct features of ion waves lead to an overall different approach of present study of ion-waves. A distinct feature of non-uniform transition from the nonisothermal case to isothermal case has been shown. Few particular plasma models have been chosen to show the characteristics behaviour of the ion-waves existing in different cases
Resumo:
Abstract is not available.
Resumo:
The effect of vectored mass transfer on the flow and heat transfer of the steady laminar incompressible nonsimilar boundary layer with viscous dissipation for two-dimensional and axisymmetric porous bodies with pressure gradient has been studied. The partial differential equations governing the flow have been solved numerically using an implicit finite-difference scheme. The computations have been carried out for a cylinder and a sphere. The skin friction is strongly influenced by the vectored mass transfer, and the heat transfer both by the vectored mass transfer and dissipation parameter. It is observed that the vectored suction tends to delay the separation whereas the effect of the vectored injection is just the reverse. Our results agree with those of the local nonsimilarity, difference-differential and asymptotic methods but not with those of the local similarity method.
Resumo:
An isolated wind power generation scheme using slip ring induction machine (SRIM) is proposed. The proposed scheme maintains constant load voltage and frequency irrespective of the wind speed or load variation. The power circuit consists of two back-to-back connected inverters with a common dc link, where one inverter is directly connected to the rotor side of SRIM and the other inverter is connected to the stator side of the SRIM through LC filter. Developing a negative sequence compensation method to ensure that, even under the presence of unbalanced load, the generator experiences almost balanced three-phase current and most of the unbalanced current is directed through the stator side converter is the focus here. The SRIM controller varies the speed of the generator with variation in the wind speed to extract maximum power. The difference of the generated power and the load power is either stored in or extracted from a battery bank, which is interfaced to the common dc link through a multiphase bidirectional fly-back dc-dc converter. The SRIM control scheme, maximum power point extraction algorithm and the fly-back converter topology are incorporated from available literature. The proposed scheme is both simulated and experimentally verified.
Resumo:
The bgl operon of Escherichia coil is transcriptionally inactive in wild-type cells. DNA insertion sequences (IS) constitute a major class of spontaneous mutations that activate the cryptic bgl promoter. In an attempt to study the molecular mechanism of activation mediated by insertion sequences, transcription of the bgl promoter was carried out in vitro. Stimulation of transcription is observed when a plasmid containing an insertionally activated bgl promoter is used as a template in the absence of proteins other than RNA polymerase. Deletions that remove sequences upstream of the bgl promoter, and insertion of a 1.2 kb DNA fragment encoding resistance to kanamycin, activate the promoter. Point mutations within a region of dyad symmetry upstream of the promoter, which has the potential to extrude into a cruciform structure under torsional stress, also lead to activation, Introduction of a sequence with dyad symmetry, upstream of an activated bgl promoter carrying a deletion of upstream sequences, results in a fourfold reduction in transcription, These results suggest that the cryptic nature of the bgl promoter is because of the presence of DNA structural elements near the promoter that negatively affect transcription.
Resumo:
A mathematical model is developed to simulate oxygen consumption, heat generation and cell growth in solid state fermentation (SSF). The fungal growth on the solid substrate particles results in the increase of the cell film thickness around the particles. The model incorporates this increase in the biofilm size which leads to decrease in the porosity of the substrate bed and diffusivity of oxygen in the bed. The model also takes into account the effect of steric hindrance limitations in SSF. The growth of cells around single particle and resulting expansion of biofilm around the particle is analyzed for simplified zero and first order oxygen consumption kinetics. Under conditions of zero order kinetics, the model predicts upper limit on cell density. The model simulations for packed bed of solid particles in tray bioreactor show distinct limitations on growth due to simultaneous heat and mass transport phenomena accompanying solid state fermentation process. The extent of limitation due to heat and/or mass transport phenomena is analyzed during different stages of fermentation. It is expected that the model will lead to better understanding of the transport processes in SSF, and therefore, will assist in optimal design of bioreactors for SSF.
Resumo:
We present a generic theory for the dynamics of a stiff filament under tension, in an active medium with orientational correlations, such as a microtubule in contractile actin. In sharp contrast to the case of a passive medium, we find the filament can stiffen, and possibly oscillate or buckle, depending on both the contractile or tensile nature of the activity and the filament-medium anchoring interaction. We also demonstrate a strong violation of the fluctuation-dissipation (FD) relation in the effective dynamics of the filament, including a negative FD ratio. Our approach is also of relevance to the dynamics of axons, and our model equations bear a remarkable formal similarity to those in recent work [Martin P, Hudspeth AJ, Juelicher F (2001) Proc Natl Acad Sci USA 98: 14380-14385] on auditory hair cells. Detailed tests of our predictions can be made by using a single filament in actomyosin extracts or bacterial suspensions.
Resumo:
The present paper records the results of a case study on the impact of an extensive grassland fire on the physical and optical properties of aerosols at a semi-arid station in southern India for the first time from ground based measurements using a MICROTOPS-II sunphotometer, an aethalometer and a quartz crystal microbalance impactor (QCM). Observations revealed a substantial increase in aerosol optical depth (AOD) at all wavelengths during burning days compared to normal days. High AOD values observed at shorter wavelengths suggest the dominance of accumulation mode particle loading over the study area. Daily mean aerosol size spectra shows, most of the time, power-law distribution. To characterize AOD, the Angstrom parameters (i.e., alpha and beta) were used. Wavelength exponent (1.38) and turbidity coefficient (0.21) are high during burning days compared to normal days, thereby suggesting an increase in accumulation mode particle loading. Aerosol size distribution suggested dominance of accumulation mode particle loading during burning days compared to normal days. A significant positive correlation was observed between AOD at 500 mn and water vapour and negative correlation between AOD at 500 nm and wind speed for burning and non-burning days. Diurnal variations of black carbon (BC) aerosol mass concentrations increased by a factor of similar to 2 in the morning and afternoon hours during burning period compared to normal days.
Resumo:
We use a combination of classical model and first-principles density functional theory calculations to study lattice dynamics of Y2W3O12 and identify phonons responsible for its negative thermal expansion (NTE). Born dynamical charges of various atoms are found to deviate anomalously from their nominal values. We find that the phonons with energy from 4 to 10 meV are the primary contributors to its NTE. These phonons involve rotations of the YO6 octahedra and WO4 tetrahedra in mutually opposite sense and collective translational atomic displacements, reflecting a strong mixing between acoustic and optic modes.