90 resultados para Nanotoxicity, Genotoxicity, Zinc oxide nanoparticles, respiratory epithelia, DNA damages
Resumo:
Zinc oxide (ZnO) thin films have been prepared on silicon substrates by sol-gel spin coating technique with spinning speed of 3,000 rpm. The films were annealed at different temperatures from 200 to 500 A degrees C and found that ZnO films exhibit different nanostructures at different annealing temperatures. The X-ray diffraction (XRD) results showed that the ZnO films convert from amorphous to polycrystalline phase after annealing at 400 A degrees C. The metal oxide semiconductor (MOS) capacitors were fabricated using ZnO films deposited on pre-cleaned silicon (100) substrates and electrical properties such as current versus voltage (I-V) and capacitance versus voltage (C-V) characteristics were studied. The electrical resistivity decreased with increasing annealing temperature. The oxide capacitance was measured at different annealing temperatures and different signal frequencies. The dielectric constant and the loss factor (tan delta) were increased with increase of annealing temperature.
Resumo:
Tin (Sn) doped zinc oxide (ZnO) thin films were synthesized by sol-gel spin coating method using zinc acetate di-hydrate and tin chloride di-hydrate as the precursor materials. The films were deposited on glass and silicon substrates and annealed at different temperatures in air ambient. The agglomeration of grains was observed by the addition of Sn in ZnO film with an average grain size of 60 nm. The optical properties of the films were studied using UV-VIS-NIR spectrophotometer. The optical band gap energies were estimated at different concentrations of Sn. The MOS capacitors were fabricated using Sn doped ZnO films. The capacitance-voltage (C-V), dissipation vs. voltage (D-V) and current-voltage (I-V) characteristics were studied and the electrical resistivity and dielectric constant were estimated. The porosity and surface area of the films were increased with the doping of Sn which makes these films suitable for opto-electronic applications. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
In this work the field emission studies of a new type of field emitter, zinc oxide (ZnO) core/graphitic (g-C) shell nanowires are presented. The nanowires are synthesized by chemical vapor deposition of zinc acetate at 1300 degrees C Scanning and transmission electron microscopy characterization confirm high aspect ratio and novel core-shell morphology of the nanowires. Raman spectrum of the nanowires mat represents the characteristic Raman modes from g-C shell as well as from the ZnO core. A low turn on field of 2.75 V/mu m and a high current density of 1.0 mA/cm(2) at 4.5 V/mu m for ZnO/g-C nanowires ensure the superior field emission behavior compared to the bare ZnO nanowires. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
This work presents micro-actuation of atomic force microscopy (AFM) cantilevers using piezoelectric Zinc Oxide (ZnO) thin film. In tapping mode AFM, the cantilever is driven near its resonant frequency by an external oscillator such as piezotube or stack of piezoelectric material. Use of integrated piezoelectric thin film for AFM cantilever eliminates the problems like inaccurate tuning and unwanted vibration modes. In this work, silicon AFM cantilevers were sputter deposited with ZnO piezoelectric film along with top and bottom metallic electrodes. The self-excitation of the ZnO coated AFM cantilever was studied using Laser Doppler Vibrometer (LDV). At its resonant frequency (227.11 kHz), the cantilever displacement varies linearly with applied excitation voltage. We observed an increase in the actuation response (131nm/V) due to improved quality of ZnO films deposited at 200 degrees C.
Resumo:
Vertically aligned zinc oxide (ZnO) hierarchical nanostructures were developed by homo-epitaxial growth method using nickel as catalyst, and their physical properties were investigated and reported. ZnO nanorods grown by vapor-liquid-solid method are single crystalline and grown along the < 001 > direction, whereas the second order nano-branches are grown along the < 110 > direction. The homo-epitaxial relation between nano-branches (ZnOb) and ZnO cores (ZnOc) is found to be (110)ZnOb//(110)ZnOc and (002)ZnOb//(002)ZnOc. The simple and hierarchical nanostructures exhibited ultra-violet emission peak at 380 nm as near band edge emission of ZnO and have very weak defects related peak at 492 nm. (C) 2013 The Electrochemical Society. All rights reserved.
Resumo:
Zinc Oxide (ZnO) and indium doped ZnO (IZO) thin films with different indium compositions were grown on p-type boron doped Si substrates by pulsed laser deposition (PLD). The effect of indium concentration on the structural, optical and electrical properties of the film was studied. XRD, XPS and Raman studies confirm the single phase formation and successful doping of In in to ZnO. We observed various photoluminescence emissions, ranging from UV to visible, with the incorporation of In into ZnO. Room temperature Current-Voltage (I-V) characteristics showed good p-n junction properties for n-type-undoped and In doped ZnO with p-type substrates. The turn on voltage was observed to be decreasing with increase in In composition.
Resumo:
Sodium doped zinc oxide (Na:ZnO) thin films were deposited on glass substrates at substrate temperatures 300,400 and 500 degrees C by a novel nebulizer spray method. X-ray diffraction shows that all the films are polycrystalline in nature having hexagonal structure with high preferential orientation along (0 0 2) plane. High resolution SEM studies reveal the formation of Na-doped ZnO films having uniformly distributed nano-rods over the entire surface of the substrates at 400 degrees C. The complex impedance of the ZnO nano-rods shows two distinguished semicircles and the diameter of the arcs got decreased in diameter as the temperature increases from 170 to 270 degrees C and thereafter slightly increased. (c) 2013 Elsevier B.V. All rights reserved.
Resumo:
Single crystalline zinc oxide (ZnO) nanorod array has been used for the fabrication of CdSe/CdS/PbS/ZnO quantum dot sensitized solar cell (QDSSC). The ZnO nanorod array photoanodes are sensitized with consecutive layer of PbS, CdS and CdSe quantum dots by employing simple successive ion layer adsorption and reaction (SILAR) and chemical bath deposition (CBD) techniques. The performances of the QDSSCs are examined in detail using polysulfide electrolyte with copper sulfide (CuS) counter electrode. The combination of two successive layers of PbS with CdSe/CdS/ZnO shows an improved short circuit current density (12.223 mA cm(-2)) with a maximum power to conversion efficiency of 2.352% under 1 sun illumination. This enhancement is mainly attributed due to the better light harvesting ability of the PbS quantum dots and make large accumulation of photo-injected electrons in the conduction band of ZnO, and CdSe/CdS layers lower the recombination of photo-injected electrons with the electrolyte, these are well evidenced with the photovoltaic studies and electrochemical impedance spectroscopy. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
Zinc oxide nanorods (ZnO NRs) have been synthesized on flexible substrates by adopting a new and novel three-step process. The as-grown ZnO NRs are vertically aligned and have excellent chemical stoichiometry between its constituents. The transmission electron microscopic studies show that these NR structures are single crystalline and grown along the < 001 > direction. The optical studies show that these nanostructures have a direct optical band gap of about 3.34 eV. Therefore, the proposed methodology for the synthesis of vertically aligned NRs on flexible sheets launches a new route in the development of low-cost flexible devices. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
A special morphological zinc oxide (ZnO) photoanode for dye-sensitized solar cell was fabricated by simple sol-gel drop casting technique. This film shows a wrinkled structure resembling the roots of banyan tree, which acts as an effective self scattering layer for harvesting more visible light and offers an easy transport path for photo-injected electrons. These ZnO electrode of low thickness (similar to 5 mu m) gained an enhanced short-circuit current density of 6.15 mA/cm(2), open-circuit voltage of 0.67 V, fill factor of 0.47 and overall conversion efficiency of 1.97 % under 1 sun illumination. This shows a high conversion efficiency and a superior performance than that of ZnO nanoparticle-based photoanode (eta similar to 1.13 %) of high thickness (similar to 8 mu m).
Resumo:
A low temperature solution approach was employed to grow zinc oxide (ZnO) nanorods with various aspect ratios. Various sizes (diameter-10-25nm) of the nanorods were grown by changing the concentrations of the growth solution. The length (50nm-500nm) of nanorods was controlled using growth times. These one-dimensional (1D) nanostructures with direct paths for a charge transport with high surface area for light harvesting, are promising candidates for organic photovoltaics (OPV). The structural and optical properties of the prepared ZnO nanorods have been studied using SEM, XRD and UV-Vis absorption spectroscopy. Using as-grown ZnO inverted OPV was fabricated. ZnO nanorods were subjected to various doses of UV-ozone irradiation which led to improvement in transmission and hence enhanced device performance.
Resumo:
Vertically aligned zinc oxide nanorods (ZnO NRs) were synthesized on kapton flexible sheets using a simple and cost-effective three-step process (electrochemical seeding, annealing under ambient conditions, and chemical solution growth). Scanning electron microscopy studies reveal that ZnO NRs grown on seed-layers, developed by electrochemical deposition at a negative potential of 1.5 V over a duration of 2.5 min and annealed at 200 degrees C for 2 h, consist of uniform morphology and good chemical stoichiometry. Transmission electron microscopy analyses show that the as-grown ZnO NRs have single crystalline hexagonal structure with a preferential growth direction of < 001 >. Highly flexible p-n junction diodes fabricated by using p-type conductive polymer exhibited excellent diode characteristics even under the fold state.
Resumo:
Two different soft-chemical, self-assembly-based solution approaches are employed to grow zinc oxide (ZnO) nanorods with controlled texture. The methods used involve seeding and growth on a substrate. Nanorods with various aspect ratios (1-5) and diameters (15-65 nm) are grown. Obtaining highly oriented rods is determined by the way the substrate is mounted within the chemical bath. Furthermore, a preheat and centrifugation step is essential for the optimization of the growth solution. In the best samples, we obtain ZnO nanorods that are almost entirely oriented in the (002) direction; this is desirable since electron mobility of ZnO is highest along this crystallographic axis. When used as the buffer layer of inverted organic photovoltaics (I-OPVs), these one-dimensional (1D) nanostructures offer: (a) direct paths for charge transport and (b) high interfacial area for electron collection. The morphological, structural, and optical properties of ZnO nanorods are studied using scanning electron microscopy, X-ray diffraction, and ultraviolet-visible light (UV-vis) absorption spectroscopy. Furthermore, the surface chemical features of ZnO films are studied using X-ray photoelectron spectroscopy and contact angle measurements. Using as-grown ZnO, inverted OPVs are fabricated and characterized. For improving device performance, the ZnO nanorods are subjected to UV-ozone irradiation. UV-ozone treated ZnO nanorods show: (i) improvement in optical transmission, (ii) increased wetting of active organic components, and (iii) increased concentration of Zn-O surface bonds. These observations correlate well with improved device performance. The devices fabricated using these optimized buffer layers have an efficiency of similar to 3.2% and a fill factor of 0.50; this is comparable to the best I-OPVs reported that use a P3HT-PCBM active layer.
Resumo:
The combustion of oxidizer zinc nitrate and fuel oxalic acid results in quasi-fibrous zinc oxide. The processing parameters including oxidizer to fuel ratio, time and temperature were optimized for the resultant crystal structure and morphology. Pure hexagonal phase formation does not depend on the fuel ratio, but a stoichiometric ratio of oxidizer to fuel at 450 degrees C and 30 min results in highly crystalline ZnO with 3 mu m length and 0.5 mu m width. This quasi-fiber originates from partial fusion of near spherical, similar to 60 nm particles during the rapid rate of reaction in the combustion process. Transmission electron microscopic analysis confirms the anisotropic primary particle orientation and pore distribution within the developed quasi-fibrous particles. The degradation of methyl orange was assessed by degrading the dye in the presence of the synthesized ZnO (2.95 eV) under both UV and visible light. Quasi-fibrous zinc oxide exhibits effective photocatalytic efficiency under visible light irradiation.
Resumo:
Doubly (Sn + F) doped zinc oxide (ZnO:Sn:F) thin films were deposited onto glass substrates using a simplified spray pyrolysis technique. The deposited films were annealed at 400 degrees C under two different ambiences (air and vacuum) for 2 h. The photocatalytic activity of these films was assessed through photocatalytic decolorization kinetics of Methylene Blue (MB) dye and the decolorization efficiency of the annealed films was compared with that of their as-deposited counterpart. The photocatalytic studies reveal that the ZnO:Sn:F films annealed under vacuum environment exhibits better photocatalytic efficiency when compared with both air annealed and as-deposited films. The SEM and TEM images depict that the surface of each of the films has an overlayer comprising of nanobars formed on a bottom layer, having spherical grains. The studies show that the diameter of the nanobars plays crucial role in enhancing the photocatalytic activity of the ZnO:Sn:F films. The structural, optical and electrical studies substantiate the discussions on the photocatalytic ability of the deposited films. (C) 2014 Elsevier B.V. All rights reserved.