107 resultados para Naive Bayes classifier


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present results for one-loop matching coefficients between continuum four-fermion operators, defined in the Naive Dimensional Regularization scheme, and staggered fermion operators of various types. We calculate diagrams involving gluon exchange between quark fines, and ''penguin'' diagrams containing quark loops. For the former we use Landau-gauge operators, with and without O(a) improvement, and including the tadpole improvement suggested by Lepage and Mackenzie. For the latter we use gauge-invariant operators. Combined with existing results for two-loop anomalous dimension matrices and one-loop matching coefficients, our results allow a lattice calculation of the amplitudes for KKBAR mixing and K --> pipi decays with all corrections of O(g2) included. We also discuss the mixing of DELTAS = 1 operators with lower dimension operators, and show that, with staggered fermions, only a single lower dimension operator need be removed by non-perturbative subtraction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the present study, we report for the first time the efficacy of recombinant Bm95 mid gut antigen isolated from an Argentinean strain of Rhipicephalus microplus strain A in controlling the tick infestations in India. The synthetic gene for Bm95 optimized for expression in yeast was obtained and used to generate yeast transformants expressing Bm95 which was purified to apparent homogeneity. Liquid chromatography-mass spectrometry analysis of the purified protein confirmed its identity as Bm95. Vaccine was prepared by blending various concentrations of purified Bm95 with aluminium hydroxide as an adjuvant. lmmunogenicity studies of the vaccine in rabbits and cattle indicated that the vaccine was highly immunogenic. The efficacy studies of the vaccine was done in cattle. Naive Bos indicus cattle were vaccinated with the recombinant vaccine and were challenged with the larval, nymphal and adult forms of Rhiphicephalus haemaphysaloides. The vaccine protected the animals from larval, nymph and adult tick challenges with an efficacy of 98.7%, 84.6% and 78.9% respectively. The results obtained from the above studies clearly demonstrated the advantage and possibilities of the use of Bm95 in controlling R. haemaphysaloides infestations in the field. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work describes an online handwritten character recognition system working in combination with an offline recognition system. The online input data is also converted into an offline image, and parallely recognized by both online and offline strategies. Features are proposed for offline recognition and a disambiguation step is employed in the offline system for the samples for which the confidence level of the classifier is low. The outputs are then combined probabilistically resulting in a classifier out-performing both individual systems. Experiments are performed for Kannada, a South Indian Language, over a database of 295 classes. The accuracy of the online recognizer improves by 11% when the combination with offline system is used.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we propose a novel dexterous technique for fast and accurate recognition of online handwritten Kannada and Tamil characters. Based on the primary classifier output and prior knowledge, the best classifier is chosen from set of three classifiers for second stage classification. Prior knowledge is obtained through analysis of the confusion matrix of primary classifier which helped in identifying the multiple sets of confused characters. Further, studies were carried out to check the performance of secondary classifiers in disambiguating among the confusion sets. Using this technique we have achieved an average accuracy of 92.6% for Kannada characters on the MILE lab dataset and 90.2% for Tamil characters on the HP Labs dataset.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We study lazy structure sharing as a tool for optimizing equivalence testing on complex data types, We investigate a number of strategies for implementing lazy structure sharing and provide upper and lower bounds on their performance (how quickly they effect ideal configurations of our data structure). In most cases when the strategies are applied to a restricted case of the problem, the bounds provide nontrivial improvements over the naive linear-time equivalence-testing strategy that employs no optimization. Only one strategy, however, which employs path compression, seems promising for the most general case of the problem.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The problem of sensor-network-based distributed intrusion detection in the presence of clutter is considered. It is argued that sensing is best regarded as a local phenomenon in that only sensors in the immediate vicinity of an intruder are triggered. In such a setting, lack of knowledge of intruder location gives rise to correlated sensor readings. A signal-space view-point is introduced in which the noise-free sensor readings associated to intruder and clutter appear as surfaces f(s) and f(g) and the problem reduces to one of determining in distributed fashion, whether the current noisy sensor reading is best classified as intruder or clutter. Two approaches to distributed detection are pursued. In the first, a decision surface separating f(s) and f(g) is identified using Neyman-Pearson criteria. Thereafter, the individual sensor nodes interactively exchange bits to determine whether the sensor readings are on one side or the other of the decision surface. Bounds on the number of bits needed to be exchanged are derived, based on communication-complexity (CC) theory. A lower bound derived for the two-party average case CC of general functions is compared against the performance of a greedy algorithm. Extensions to the multi-party case is straightforward and is briefly discussed. The average case CC of the relevant greaterthan (CT) function is characterized within two bits. Under the second approach, each sensor node broadcasts a single bit arising from appropriate two-level quantization of its own sensor reading, keeping in mind the fusion rule to be subsequently applied at a local fusion center. The optimality of a threshold test as a quantization rule is proved under simplifying assumptions. Finally, results from a QualNet simulation of the algorithms are presented that include intruder tracking using a naive polynomial-regression algorithm. 2010 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper is concerned with off-line signature verification. Four different types of pattern representation schemes have been implemented, viz., geometric features, moment-based representations, envelope characteristics and tree-structured Wavelet features. The individual feature components in a representation are weighed by their pattern characterization capability using Genetic Algorithms. The conclusions of the four subsystems teach depending on a representation scheme) are combined to form a final decision on the validity of signature. Threshold-based classifiers (including the traditional confidence-interval classifier), neighbourhood classifiers and their combinations were studied. Benefits of using forged signatures for training purposes have been assessed. Experimental results show that combination of the Feature-based classifiers increases verification accuracy. (C) 1999 Pattern Recognition Society. Published by Elsevier Science Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we show that it is possible to reduce the complexity of Intra MB coding in H.264/AVC based on a novel chance constrained classifier. Using the pairs of simple mean-variances values, our technique is able to reduce the complexity of Intra MB coding process with a negligible loss in PSNR. We present an alternate approach to address the classification problem which is equivalent to machine learning. Implementation results show that the proposed method reduces encoding time to about 20% of the reference implementation with average loss of 0.05 dB in PSNR.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Due to its wide applicability, semi-supervised learning is an attractive method for using unlabeled data in classification. In this work, we present a semi-supervised support vector classifier that is designed using quasi-Newton method for nonsmooth convex functions. The proposed algorithm is suitable in dealing with very large number of examples and features. Numerical experiments on various benchmark datasets showed that the proposed algorithm is fast and gives improved generalization performance over the existing methods. Further, a non-linear semi-supervised SVM has been proposed based on a multiple label switching scheme. This non-linear semi-supervised SVM is found to converge faster and it is found to improve generalization performance on several benchmark datasets. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper introduces a scheme for classification of online handwritten characters based on polynomial regression of the sampled points of the sub-strokes in a character. The segmentation is done based on the velocity profile of the written character and this requires a smoothening of the velocity profile. We propose a novel scheme for smoothening the velocity profile curve and identification of the critical points to segment the character. We also porpose another method for segmentation based on the human eye perception. We then extract two sets of features for recognition of handwritten characters. Each sub-stroke is a simple curve, a part of the character, and is represented by the distance measure of each point from the first point. This forms the first set of feature vector for each character. The second feature vector are the coeficients obtained from the B-splines fitted to the control knots obtained from the segmentation algorithm. The feature vector is fed to the SVM classifier and it indicates an efficiency of 68% using the polynomial regression technique and 74% using the spline fitting method.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Growing concern over the status of global and regional bioenergy resources has necessitated the analysis and monitoring of land cover and land use parameters on spatial and temporal scales. The knowledge of land cover and land use is very important in understanding natural resources utilization, conversion and management. Land cover, land use intensity and land use diversity are land quality indicators for sustainable land management. Optimal management of resources aids in maintaining the ecosystem balance and thereby ensures the sustainable development of a region. Thus sustainable development of a region requires a synoptic ecosystem approach in the management of natural resources that relates to the dynamics of natural variability and the effects of human intervention on key indicators of biodiversity and productivity. Spatial and temporal tools such as remote sensing (RS), geographic information system (GIS) and global positioning system (GPS) provide spatial and attribute data at regular intervals with functionalities of a decision support system aid in visualisation, querying, analysis, etc., which would aid in sustainable management of natural resources. Remote sensing data and GIS technologies play an important role in spatially evaluating bioresource availability and demand. This paper explores various land cover and land use techniques that could be used for bioresources monitoring considering the spatial data of Kolar district, Karnataka state, India. Slope and distance based vegetation indices are computed for qualitative and quantitative assessment of land cover using remote spectral measurements. Differentscale mapping of land use pattern in Kolar district is done using supervised classification approaches. Slope based vegetation indices show area under vegetation range from 47.65 % to 49.05% while distance based vegetation indices shoes its range from 40.40% to 47.41%. Land use analyses using maximum likelihood classifier indicate that 46.69% is agricultural land, 42.33% is wasteland (barren land), 4.62% is built up, 3.07% of plantation, 2.77% natural forest and 0.53% water bodies. The comparative analysis of various classifiers, indicate that the Gaussian maximum likelihood classifier has least errors. The computation of talukwise bioresource status shows that Chikballapur Taluk has better availability of resources compared to other taluks in the district.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Support Vector Clustering has gained reasonable attention from the researchers in exploratory data analysis due to firm theoretical foundation in statistical learning theory. Hard Partitioning of the data set achieved by support vector clustering may not be acceptable in real world scenarios. Rough Support Vector Clustering is an extension of Support Vector Clustering to attain a soft partitioning of the data set. But the Quadratic Programming Problem involved in Rough Support Vector Clustering makes it computationally expensive to handle large datasets. In this paper, we propose Rough Core Vector Clustering algorithm which is a computationally efficient realization of Rough Support Vector Clustering. Here Rough Support Vector Clustering problem is formulated using an approximate Minimum Enclosing Ball problem and is solved using an approximate Minimum Enclosing Ball finding algorithm. Experiments done with several Large Multi class datasets such as Forest cover type, and other Multi class datasets taken from LIBSVM page shows that the proposed strategy is efficient, finds meaningful soft cluster abstractions which provide a superior generalization performance than the SVM classifier.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Packet forwarding is a memory-intensive application requiring multiple accesses through a trie structure. The efficiency of a cache for this application critically depends on the placement function to reduce conflict misses. Traditional placement functions use a one-level mapping that naively partitions trie-nodes into cache sets. However, as a significant percentage of trie nodes are not useful, these schemes suffer from a non-uniform distribution of useful nodes to sets. This in turn results in increased conflict misses. Newer organizations such as variable associativity caches achieve flexibility in placement at the expense of increased hit-latency. This makes them unsuitable for L1 caches.We propose a novel two-level mapping framework that retains the hit-latency of one-level mapping yet incurs fewer conflict misses. This is achieved by introducing a secondlevel mapping which reorganizes the nodes in the naive initial partitions into refined partitions with near-uniform distribution of nodes. Further as this remapping is accomplished by simply adapting the index bits to a given routing table the hit-latency is not affected. We propose three new schemes which result in up to 16% reduction in the number of misses and 13% speedup in memory access time. In comparison, an XOR-based placement scheme known to perform extremely well for general purpose architectures, can obtain up to 2% speedup in memory access time.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper investigates a new Glowworm Swarm Optimization (GSO) clustering algorithm for hierarchical splitting and merging of automatic multi-spectral satellite image classification (land cover mapping problem). Amongst the multiple benefits and uses of remote sensing, one of the most important has been its use in solving the problem of land cover mapping. Image classification forms the core of the solution to the land cover mapping problem. No single classifier can prove to classify all the basic land cover classes of an urban region in a satisfactory manner. In unsupervised classification methods, the automatic generation of clusters to classify a huge database is not exploited to their full potential. The proposed methodology searches for the best possible number of clusters and its center using Glowworm Swarm Optimization (GSO). Using these clusters, we classify by merging based on parametric method (k-means technique). The performance of the proposed unsupervised classification technique is evaluated for Landsat 7 thematic mapper image. Results are evaluated in terms of the classification efficiency - individual, average and overall.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present a fractal coding method to recognize online handwritten Tamil characters and propose a novel technique to increase the efficiency in terms of time while coding and decoding. This technique exploits the redundancy in data, thereby achieving better compression and usage of lesser memory. It also reduces the encoding time and causes little distortion during reconstruction. Experiments have been conducted to use these fractal codes to classify the online handwritten Tamil characters from the IWFHR 2006 competition dataset. In one approach, we use fractal coding and decoding process. A recognition accuracy of 90% has been achieved by using DTW for distortion evaluation during classification and encoding processes as compared to 78% using nearest neighbor classifier. In other experiments, we use the fractal code, fractal dimensions and features derived from fractal codes as features in separate classifiers. While the fractal code is successful as a feature, the other two features are not able to capture the wide within-class variations.