48 resultados para NaA zeolite
Resumo:
Molecular dynamics simulations have been performed on monatomic sorbates confined within zeolite NaY to obtain the dependence of entropy and self-diffusivity on the sorbate diameter. Previously, molecular dynamics simulations by Santikary and Yashonath J. Phys. Chem. 98, 6368 (1994)], theoretical analysis by Derouane J. Catal. 110, 58 (1988)] as well as experiments by Kemball Adv. Catal. 2, 233 (1950)] found that certain sorbates in certain adsorbents exhibit unusually high self-diffusivity. Experiments showed that the loss of entropy for certain sorbates in specific adsorbents was minimum. Kemball suggested that such sorbates will have high self-diffusivity in these adsorbents. Entropy of the adsorbed phase has been evaluated from the trajectory information by two alternative methods: two-phase and multiparticle expansion. The results show that anomalous maximum in entropy is also seen as a function of the sorbate diameter. Further, the experimental observation of Kemball that minimum loss of entropy is associated with maximum in self-diffusivity is found to be true for the system studied here. A suitably scaled dimensionless self-diffusivity shows an exponential dependence on the excess entropy of the adsorbed phase, analogous to excess entropy scaling rules seen in many bulk and confined fluids. The two trajectory-based estimators for the entropy show good semiquantitative agreement and provide some interesting microscopic insights into entropy changes associated with confinement.
Resumo:
Diffusion of pentane isomers in zeolites NaX has been investigated using pulsed field gradient nuclear magnetic resonance (PFG-NMR) and molecular dynamics (MD) techniques respectively. Temperature and concentration dependence of diffusivities have been studied. The diffusivities obtained from NMR are roughly an order of magnitude smaller than those obtained from MD. The dependence of diffusivity on loading at high temperatures exhibits a type I behavior according to the classification of Karger and Pfeifer 1]. NMR diffusivities of the isomers exhibit the order D(n-pentane) > D(isopentane) > D(neopentane). The results from MD suggest that the diffusivities of the isomers follow the order D(n-pentane) < D(isopentane) < D(neopentane). The activation energies from NMR show E-a(n-pentane) < E-a(isopentane) < E-a(neopentane) whereas those from MD suggest the order E-a(n-pentane) > (isopentane) > E-a(neopentane). The latter follows the predictions of levitation effect whereas those of NMR appears to be due to the presence of defects in the zeolite crystals. The differences between diffusivities estimated by NMR and MD are attributed to the longer time and length scales sampled by the NMR technique, as compared to MD. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
Adsorption experiments of mixtures of long chain alkanes into silicalite under liquid phase conditions show selectivity inversion and azeotrope formation. These effects are due to the subtle interplay between the size of the adsorbed molecules and pore topology of the adsorbent. In this study, the selective uptake of lighter component during liquid phase adsorption of C/C and C/C n-alkane binary mixtures in the zeolite silicalite is understood through configurational bias grand-canonical Monte Carlo molecular simulation technique and a coarse-grained siting analysis. The simulations are conducted under conditions of low and intermediate levels of loading. The siting pattern of the adsorbates inside the zeolite pores explain the selectivity as seen in experiments.