178 resultados para Na,K-ATPase
Resumo:
Upper bounds at the weak scale are obtained for all lambda(ij)lambda(im) type product couplings of the scalar leptoquark model which may affect K-0 - (K) over bar (0), B-d - (B) over bar (d), and B-s - (B) over bar (s) mixing, as well as leptonic and semileptonic K and B decays. Constraints are obtained for both real and imaginary parts of the couplings. We also discuss the role of leptoquarks in explaining the anomalously large CP-violating phase in B-s - (B) over bar (s) mixing.
Resumo:
DNA helicases are present in all kingdoms of life and play crucial roles in processes of DNA metabolism such as replication, repair, recombination, and transcription. To date, however, the role of DNA helicases during homologous recombination in mycobacteria remains unknown. In this study, we show that Mycobacterium tuberculosis UvrD1 more efficiently inhibited the strand exchange promoted by its cognate RecA, compared to noncognate Mycobacterium smegmatis or Escherichia coli RecA proteins. The M. tuberculosis UvrD1(Q276R) mutant lacking the helicase and ATPase activities was able to block strand exchange promoted by mycobacterial RecA proteins but not of E. coil RecA. We observed that M. tuberculosis UvrA by itself has no discernible effect on strand exchange promoted by E. coli RecA but impedes the reaction catalyzed by the mycobacterial RecA proteins. Our data also show that M. tuberculosis UvrA and UvrD1 can act together to inhibit strand exchange promoted by mycobacterial RecA proteins. Taken together, these findings raise the possibility that UvrD1 and UvrA might act together in vivo to counter the deleterious effects of RecA nucleoprotein filaments and/or facilitate the dissolution of recombination intermediates. Finally, we provide direct experimental evidence for a physical interaction between M. tuberculosis UvrD1 and RecA on one hand and RecA and UvrA on the other hand. These observations are consistent with a molecular mechanism, whereby M. tuberculosis UvrA and UvrD1, acting together, block DNA strand exchange promoted by cognate and noncognate RecA proteins.
Resumo:
We investigate the scalar K pi form factor at low energies by the method of unitarity bounds adapted so as to include information on the phase and modulus along the elastic region of the unitarity cut. Using at input the values of the form factor at t = 0 and the Callan-Treiman point, we obtain stringent constraints on the slope and curvature parameters of the Taylor expansion at the origin. Also, we predict a quite narrow range for the higher-order ChPT corrections at the second Callan-Treiman point.
Resumo:
DNA helicases are present in all kingdoms of life and play crucial roles in processes of DNA metabolism such as replication, repair, recombination, and transcription. To date, however, the role of DNA helicases during homologous recombination in mycobacteria remains unknown. In this study, we show that Mycobacterium tuberculosis UvrD1 more efficiently inhibited the strand exchange promoted by its cognate RecA, compared to noncognate Mycobacterium smegmatis or Escherichia coli RecA proteins. The M. tuberculosis UvrD1(Q276R) mutant lacking the helicase and ATPase activities was able to block strand exchange promoted by mycobacterial RecA proteins but not of E. coil RecA. We observed that M. tuberculosis UvrA by itself has no discernible effect on strand exchange promoted by E. coli RecA but impedes the reaction catalyzed by the mycobacterial RecA proteins. Our data also show that M. tuberculosis UvrA and UvrD1 can act together to inhibit strand exchange promoted by mycobacterial RecA proteins. Taken together, these findings raise the possibility that UvrD1 and UvrA might act together in vivo to counter the deleterious effects of RecA nucleoprotein filaments and/or facilitate the dissolution of recombination intermediates. Finally, we provide direct experimental evidence for a physical interaction between M. tuberculosis UvrD1 and RecA on one hand and RecA and UvrA on the other hand. These observations are consistent with a molecular mechanism, whereby M. tuberculosis UvrA and UvrD1, acting together, block DNA strand exchange promoted by cognate and noncognate RecA proteins.
Resumo:
The activity of gallium in liquid Ga-Te alloys has been measured at 1120 K using a solid state galvanic cell incorporating yttria-stabilized thoria as the solid electrolyte. The cell can be schematically represented as (−) W,Re,Ga(1)+Ga2O3(s)|(Y2O3) ThO2|Ga-Te(1) + Ga2O3(s), Re, W (+) The activity of tellurium was derived by Gibbs-Duhem integration. The activity of gallium shows negative deviation from Raoult's law for XGa < 0.6 and positive deviation from ideality for XGa > 0.6. The activity of gallium was constant in the composition range 0.73 < XGa < 0.89, indicating liquid state immiscibility in this region. The Gibbs energy of mixing and the concentration-concentration structure factor at long wavelength limit show a minimum at XGa ≈ 0.4, suggesting strong interactions in the liquid phase with formation of ‘Ga2Te3‘-type complexes
Resumo:
The special magnetotransport properties of hole doped manganese perovskites originate from a complex interplay among structural, magnetic and electronic degree of freedom. In this picture the local atomic structure around Mn ions plays a special role and this is the reason why short range order techniques like X-ray absorption spectroscopy (XAS) have been deeply exploited for studying these compounds. The analysis of near edge region features (XANES) of XAS spectra can provide very fine details of the local structure around Mn, complementary to the EXAFS, so contributing to the full understanding of the peculiar physical properties of these materials. Nevertheless the XANES analysis is complicated by the large amount of structural and electronic details involved making difficult the quantitative interpretation.This work exploits the recently developed MXAN code to achieve a full structural refinement of the Mn K edge XANES of LaMnO3 and CaMnO3 compounds; they are the end compounds of the doped manganite series LaxCa1-xMnO3, in which the Mn ions are present only in one charge state as Mn3+ and Mn4+ respectively. The good agreement between the results derived from the analysis of near edge and extended region of the XAS spectra demonstrates that a quantitative picture of the local structure call be obtained from structural refinement of Mn K edge XANES data in these crystalline compounds. The XANES analysis offers, in addition.. the possibility to directly achieve information on the topology of local atomic structure around the absorber not directly achievable from EXAFS.
Resumo:
The title compound, dirubidium tricadmium tris(sulfate) dihydroxide dihydrate, consists of sheets of CdO6 octahedra and sulfate tetrahedra propagating in the (100) plane, with Rb+ ions in the interlayer positions. It is isostructural with K2Co3(SO4)(3)(OH)(2)(.)2H(2)O.
Resumo:
In the title complex, [Al(C8H13O3)(3)], a potential metal-organic chemical vapour deposition (MOCVD) precursor, three bidentate ligand molecules are bound to the metal atom, forming an octahedral geometry. Two non-planar six-membered chelate rings adopt screw-boat conformations, while the third ring has a conformation that lies about halfway between an envelope and a screw-boat.
Resumo:
The chemical-shift of the X-ray K-absorption edge of Co was studied in a large number of compounds, complexes (spinels) and minerals of Co in its different oxidation states having widely different crystal structures and containing different types of bonding and various types of ligands, and were reported collectively, for the first time, in a single paper. A quadratic relationship was established on the basis of least-squares regression analysis to hold between the chemical-shift and the effective charge on the absorbing atom, but the dominance of the linear term was shown. This relation was utilized in evaluating the charge on the Co-ion in a number of minerals. The effect on chemical-shift of oxidation states of the absorbing atom, of the bond length, crystal structure and higher shell atoms of the molecule, and of electronegativity, atomic number and ionic radius of the ligand was discussed.
Resumo:
The authors have developed a simple continuous-cooling method to determine specific heat of liquids and solids in the temperature range 100-300 K. The technique employs very simple instrumentation and continuously records the sample temperature as it cools to the bath temperature through a calibrated heat link. They have obtained specific heat values which agree with the reported data to within 3% for the samples investigated. This method also facilitates easy detection of abrupt changes in specific heat, as demonstrated in the observation of glass transition in some organic glass-forming systems. The method is sensitive to the study of relaxing heat capacity in supercooled liquids.
Resumo:
A thermodynamic study of the Ti-O system at 1573 K has been conducted using a combination of thermogravimetric and emf techniques. The results indicate that the variation of oxygen potential with the nonstoichiometric parameter delta in stability domain of TiO2-delta with rutile structure can be represented by the relation, Delta mu o(2) = -6RT In delta - 711970(+/-1600) J/mol. The corresponding relation between non-stoichiometric parameter delta and partial pressure of oxygen across the whole stability range of TiO2-delta at 1573 K is delta proportional to P-O2(-1/6). It is therefore evident that the oxygen deficient behavior of nonstoichiometric TiO2-delta is dominated by the presence of doubly charged oxygen vacancies and free electrons. The high-precision measurements enabled the resolution of oxygen potential steps corresponding to the different Magneli phases (Ti-n O2n-1) up to n = 15. Beyond this value of n, the oxygen potential steps were too small to be resolved. Based on composition of the Magneli phase in equilibrium with TiO2-delta, the maximum value of n is estimated to be 28. The chemical potential of titanium was derived as a function of composition using the Gibbs-Duhem relation. Gibbs energies of formation of the Magneli phases were derived from the chemical potentials of oxygen and titanium. The values of -2441.8(+/-5.8) kJ/mol for Ti4O7 and -1775.4(+/-4.3) kJ/mol for Ti3O5 Obtained in this study refine values of -2436.2(+/-26.1) kJ/mol and-1771.3(+/-6.9) kJ/mol, respectively, given in the JANAF thermochemical tables.
Resumo:
The k-colouring problem is to colour a given k-colourable graph with k colours. This problem is known to be NP-hard even for fixed k greater than or equal to 3. The best known polynomial time approximation algorithms require n(delta) (for a positive constant delta depending on k) colours to colour an arbitrary k-colourable n-vertex graph. The situation is entirely different if we look at the average performance of an algorithm rather than its worst-case performance. It is well known that a k-colourable graph drawn from certain classes of distributions can be ii-coloured almost surely in polynomial time. In this paper, we present further results in this direction. We consider k-colourable graphs drawn from the random model in which each allowed edge is chosen independently with probability p(n) after initially partitioning the vertex set into ii colour classes. We present polynomial time algorithms of two different types. The first type of algorithm always runs in polynomial time and succeeds almost surely. Algorithms of this type have been proposed before, but our algorithms have provably exponentially small failure probabilities. The second type of algorithm always succeeds and has polynomial running time on average. Such algorithms are more useful and more difficult to obtain than the first type of algorithms. Our algorithms work as long as p(n) greater than or equal to n(-1+is an element of) where is an element of is a constant greater than 1/4.
Resumo:
Oxides with different cation ratios 2122, 2212, 2213 and 2223 in the Ti-Ca-Ba-Cu-O system exhibit onset of superconductivity in the 110–125 K range with zero-resistance in the 95–105 K range. Electron microscopic studies show dislocations, layered morphology and other interesting features. These oxides absorb electromagnetic radiation (9.11 GHz) in the superconducting phase.