92 resultados para NUTRIENT COMPOSITION
Resumo:
The total solids of samples of ass's milk ranged from 7·80 to 9·10, the solids-not-fat from 7·14 to 8·50, and the fat from 0·54 to 0·71%. The nitrogen distribution in ass's milk is: casein 39·5, albumin 35·0, globulin 2·7 and non-protein nitrogen 22·8% of the total nitrogen. Ass's milk contains: casein 0·70, albumin 0·62 and globulin 0·07%. The total protein content is 1·39%. Ass's milk is therefore characterized by a low casein, a low globulin and a high albumin content. The non-protein nitrogen consists of amino nitrogen 8·1, urea nitrogen 24·3 and uric acid 0·7 mg./100 ml. of milk. The urea content is twice that present in cow's milk. The mean chloride and lactose contents of the milk samples are 0·037 and 6·1% respectively. The average calcium and phosphorus content of ass's milk are 0·081 and 0·059% respectively. Half the calcium is ionic, and half is in colloidal form. The phosphorus distribution is: total acid soluble 84·0, acid soluble organic 38·5, easily hydrolysable ester 27·4, inorganic 46·0, and colloidal inorganic 23·0 % of the total phosphorus. The ratio of CaO: P2O5 is 1:1. 46 % of the total phosphorus is in ester form; this is high when compared with only 12 % in cow's milk; most of the phosphoric ester forms soluble barium salts, which is a distinguishing feature of ass's milk. The total sulphur content is 15·8 mg./100 ml. The fat has a penetrating odour and is coloured orange-yellow. It has an iodine value of about 86, which is much higher than that for human milk fat. The Reichert (9·5) and Kirschner values (5·7) are low. In general, the composition of ass's milk resembles that of human rather than of cow's milk.
Resumo:
I-V studies indicate a composition dependent switching behavior (Memory or Threshold) in bulk Al20AsxTe80−x glasses, which is determined by the coordination and composition of aluminum. Investigations on temperature and thickness dependence of switching and structural studies on switched samples suggest thermal and electronic mechanisms of switching for the memory and threshold samples, respectively. The present results also show that these samples have a wider composition range of threshold behavior with lower threshold voltages compared to other threshold samples.
Resumo:
Web services are now a key ingredient of software services offered by software enterprises. Many standardized web services are now available as commodity offerings from web service providers. An important problem for a web service requester is the web service composition problem which involves selecting the right mix of web service offerings to execute an end-to-end business process. Web service offerings are now available in bundled form as composite web services and more recently, volume discounts are also on offer, based on the number of executions of web services requested. In this paper, we develop efficient algorithms for the web service composition problem in the presence of composite web service offerings and volume discounts. We model this problem as a combinatorial auction with volume discounts. We first develop efficient polynomial time algorithms when the end-to-end service involves a linear workflow of web services. Next we develop efficient polynomial time algorithms when the end-to-end service involves a tree workflow of web services.
Resumo:
Freshwater ecosystems vary in size and composition and contain a wide range of organisms which interact with each other and with the environment. These interactions are between organisms and the environment as nutrient cycling, biomass formation and transfer, maintenance of internal environment and interactions with the external environment. The range of organisms present in aquatic communities decides the generation and transfer function of biomass, which defines and characterises the system. These organisms have distinct roles as they occupy particular trophic levels, forming an interconnected system in a food chain. Availability of resources and competition would primarily determine the balance of individual species within the food web, which in turn influences the variety and proportions of the different organisms, with important implications for the overall functioning of the system. This dynamic and diverse relationship decides the physical, chemical and biological elements across spatial and temporal scales in the aquatic ecosystem, which can be recorded by regular inventorying and monitoring to maintain the integrity and conserve the ecosystem. Regular environmental monitoring, particularly water quality monitoring allows us to detect, assess and manage the overall impacts on the rivers. The appreciation of water quality is in constant flux. Water quality assessments derived through the biotic indices, i.e. assessments based on observations of the resident floral and faunal communities has gained importance in recent years. Biological evaluations provide a description of the water quality that is often not achievable from elemental analyses alone. A biological indicator (or bioindicator) is a taxon or taxa selected based on its sensitivity to a particular attribute, and then assessed to make inferences about that attribute. In other words, they are a substitute for directly measuring abiotic features or other biota. Bioindicators are evaluated through presence or absence, condition, relative abundance, reproductive success, community structure (i.e. composition and diversity), community function (i.e. trophic structure), or any combination thereof.Biological communities reflect the overall ecological integrity by integrating various stresses, thus providing a broad measure of their synergistic impacts. Aquatic communities, both plants and animals, integrate and reflect the effects of chemical and physical disturbances that occur over extended periods of time. Monitoring procedures based on the biota measure the health of a river and the ability of aquatic ecosystems to support life as opposed to simply characterising the chemical and physical components of a particular system. This is the central purpose of assessing the biological condition of aquatic communities of a river.Diatoms (Bacillariophyceae), blue green algae (Cyanophyceae), green algae (Chlorophyceae), and red algae (Rhodphyceae) are the main groups of algae in flowing water. These organisms are widely used as biological indicators of environmental health in the aquatic ecosystem because algae occupy the most basic level in the transfer of energy through natural aquatic systems. The distribution of algae in an aquatic ecosystem is directly related to the fundamental factors such as physical, chemical and biological constituents. Soft algae (all the algal groups except diatoms) have also been used as indicators of biological integrity, but they may have less efficiency than diatoms in this respect due to their highly variable morphology. The diatoms (Bacillariophyceae) comprise a ubiquitous, highly successful and distinctive group of unicellular algae with the most obvious distinguishing characteristic feature being siliceous cell walls (frustules). The photosynthetic organisms living within its photic zone are responsible for about one-half of global primary productivity. The most successful organisms are thought to be photosynthetic prokaryotes (cyanobacteria and prochlorophytes) and a class of eukaryotic unicellular algae known as diatoms. Diatoms are likely to have arisen around 240 million years ago following an endosymbiotic event between a red eukaryotic alga and a heterotrophic flagellate related to the Oomycetes.The importance of algae to riverine ecology is easily appreciated when one considers that they are primary producers that convert inorganic nutrients into biologically active organic compounds while providing physical habitat for other organisms. As primary producers, algae transform solar energy into food from which many invertebrates obtain their energy. Algae also transform inorganic nutrients, such as atmospheric nitrogen into organic forms such as ammonia and amino acids that can be used by other organisms. Algae stabilises the substrate and creates mats that form structural habitats for fish and invertebrates. Algae are a source of organic matter and provide habitat for other organisms such as non-photosynthetic bacteria, protists, invertebrates, and fish. Algae's crucial role in stream ecosystems and their excellent indicator properties make them an important component of environmental studies to assess the effects of human activities on stream health. Diatoms are used as biological indicators for a number of reasons: 1. They occur in all types of aquatic ecosystems. 2. They collectively show a broad range of tolerance along a gradient of aquatic productivity, individual species have specific water chemistry requirements. 3. They have one of the shortest generation times of all biological indicators (~2 weeks). They reproduce and respond rapidly to environmental change and provide early measures of both pollution impacts and habitat restoration. 4. It takes two to three weeks before changes are reflected to a measurable extent in the assemblage composition.
Resumo:
This paper presents an intelligent procurement marketplace for finding the best mix of web services to dynamically compose the business process desired by a web service requester. We develop a combinatorial auction approach that leads to an integer programming formulation for the web services composition problem. The model takes into account the Quality of Service (QoS) and Service Level Agreements (SLA) for differentiating among multiple service providers who are capable of fulfilling a functionality. An important feature of the model is interface aware composition.
Resumo:
In this paper we propose the architecture of a SoC fabric onto which applications described in a HLL are synthesized. The fabric is a homogeneous layout of computation, storage and communication resources on silicon. Through a process of composition of resources (as opposed to decomposition of applications), application specific computational structures are defined on the fabric at runtime to realize different modules of the applications in hardware. Applications synthesized on this fabric offers performance comparable to ASICs while retaining the programmability of processing cores. We outline the application synthesis methodology through examples, and compare our results with software implementations on traditional platforms with unbounded resources.
Resumo:
A new composition path, Xi-Xj=constant, is suggested for the semi-empirical calculation of the thermodynamic properties of ternary ‘substitutional’ solutions from binary data, when the binary systems show deviations from the regular solution model. A comparison is made between the results obtained for integral and partial properties using this composition path and those calculated employing other composition paths suggested in literature. It appears that the best estimate of the ternary properties is obtained when binary data at compositions closest to the ternary composition are used.
Resumo:
Equations for the computation of integral and partial thermodynamic properties of mixing in quarternary systems are derived using data on constituent binary systems and shortest distance composition paths to the binaries. The composition path from a quarternary composition to the i-j binary is characterized by a constant value of (Xi − Xj). The merits of this composition path over others with constant values for View the MathML source or Xi are discussed. Finally the equations are generalized for higher order systems. They are exact for regular solutions, but may be used in a semiempirical mode for non-regular solutions.
Resumo:
The variation of equilibrium oxygen potential with oxygen concentration inYBa 2Cu3O7-δhas been measured in the temperature range of 773 to 1223 K. For temperatures up to 1073 K, the oxygen content of theYBa 2Cu3O7-δsample, held in a stabilized-zirconia crucible, was altered by coulometric titration. The compound was in contact with the electrolyte, permitting direct exchange of oxygen ions. For measurements above 1073 K, the oxide was contained in a magnesia crucible placed inside a closed silica tube. The oxygen potential in the gas phase above the 123 compound was controlled and measured by a solid-state cell based on yttria-stabilized zirconia, which served both as a pump and sensor. Pure oxygen at a pressure of 1.01 × 105 Pa was used as the reference electrode. The oxygen pressure over the sample was varied from 10-1 to 105 Pa. The oxygen concentrations of the sample equilibrated with pure oxygen at 1.01 × 105 Pa at different temperatures were determined after quenching in liquid nitrogen by hydrogen reduction at 1223 K. The plot of chemical potential of oxygen as a function of oxygen non-stoichiometry shows an inflexion at δ ∼ 0.375 at 873 K. Data at 773 K indicate tendency for phase separation at lower temperatures. The partial enthalpy and entropy of oxygen derived from the temperature dependence of electromotive force (emf ) exhibit variation with composition. The partial enthalpy for °= 0.3, 0.4, and 0.5 also appears to be temperature dependent. The results are discussed in comparison with the data reported in the literature. An expression for the integral free energy of formation of YBa2Cu3O6.5 is evaluated based on measurements reported in the literature. By integration of the partial Gibbs’ energy of oxygen obtained in this study, the variation of integral property with oxygen concentration is obtained at 873 K.
Resumo:
New compos~tiong radient solid electrolytes are developed which have application in high temperature solid state galvanic sensors and provide a new tool for thermodynamic measurements. The electrolyte consists oi a solid solution between two ionic conductors with a common mobile ion and spatial variation in composition of otber coxup nents. Incorporation of the composite electrolyte in sensors permits the use oi dissimilar gas electrodes. It is demonsuated, both experimentall y and theoretically, that the composition gradient of the relativeiy immobile species does not give rise to a diffusion potential.The emi of a cell is determined by the activity of the mobile species at the two eiectrodes. The thermodynamic properties of solid solutions can be measured using the gradient solid electrolyte. The experimental stuay is based on model systems A?(COj)x(S04)l-x (A=Na,K),where S \.aria across the electrolyte. The functionally gradient solid electrolytes used for activity measurements consist of pure carbonate at one ena and the solid solution under stuav at the other. The identical vaiues of activity, obtained h m t hree different modes of operation of the ceil. indicate unit transport number for the ddi metal ion in the graciient electrolyte. Tlle activities in the solid solutions exhibit moderate positive deviations from Raoult 's law.
Resumo:
Microalgae are the most sought after sources for biofuel production due to their capacity to utilize carbon and synthesize it into high density liquid. Current energy crisis have put microalgae under scanner for economical production of biodiesel. Modifications like physiological stress and genetic variation is done to increase the lipid yield of the microalgae. A study was conducted using a microalgal consortium for a period of 15 days to evaluate the feasibility of algal biomass from laboratory as well as outdoor culture conditions. Native algal strains were isolated from a tropical freshwater lake. Preliminary growth studies indicated the relationship between the nitrates and phosphates to the community structure through the days. The lipid profile done using Gas chromatography – Mass spectrometry, revealed the profile of the algal community. Resource competition led to isolation of algae, aided in the lipid profile of a single alga. However, further studies on the application of the mixed population are required to make this consortium approach economically viable for producing algae biofuels.
Resumo:
A detailed study on the removal of oxides of nitrogen (NOx) from the exhaust of a stationary diesel engine was carried out using non-thermal plasma (dielectric barrier discharge) process. The objective of the study was to explore the effect of different voltage energizations and exhaust composition on the NOx removal process. Three types of voltage energizations, namely AC, DC and Pulse were examined. Due to the ease of generation of high voltage AC/DC electrical discharges from automobile/Vehicular battery supply for possible retrofitting in exhaust cleaning circuit, it was found relevant to investigate individual energisation cases in detail for NOx removal. AC and Pulse energisations exhibit a superior NOx removal efficiency compared to DC energisation. However,Pulse energisation is found to be more energy efficient. Experiments were further carried out with filtered/ unfiltered (raw) exhaust under pulse energisations. The results were discussed with regard to NOx removal, energy consumption and formation of by-products.
Resumo:
Impact of disturbance on forest stand density, basal area, dbh class distribution of density and basal area, species richness, species diversity and similarity index was assessed through monitoring six, one-hectare, permanent forest plots after a period of 24 years in tropical moist forests of Uttara Kannada district, Western Ghats, India. It was observed that all sites lost trees due to removal by people and mortality. Loss of trees was more in sites that are easily accessible and closer to human habitation. In spite of a decrease in tree density, an increase in basal area was observed in some forest plots, which could be on account of stimulatory growth of surviving trees. Decrease in basal area in other sites indicates greater human pressure and overexploitation of trees. Preponderance of lower girth class trees, and a unimodal reverse `J-shaped' curve of density distribution as observed in majority of the sites in the benchmark year, was indicative of regenerating status of these forests. The decrease in number of species in all forest sites was due to indiscriminate removal of trees by people, without sparing species with only a few individuals, and also due to mortality of trees of rare species. Higher species richness and diversity in the lowest dbh class in most of the sites in the benchmark year is indicative of the existence of favorable conditions for sylvigenesis. The decrease in the similarity index suggests extirpation of species, favoring invasion and colonization by secondary species. To minimize human pressure on forests and to facilitate regeneration and growth, proper management planning and conservation measures are needed.
Resumo:
Ant-plant interactions often are mediated by extrafloral nectar (EFN) composition that may influence plant visitation by ants. Over a 300 km range in the Indian Western Ghats, we investigated the correlation between the EFN composition of the myrmecophytic ant-plant Humboldtia brunonis (Fabaceae) and the number and species of ants visiting EFN. EFN composition varied among H. brunonis populations and between plant organs (floral bud vs. young leaf EFN). In general, EFN was rich in sugars with small quantities of amino acids, especially essential amino acids, and had moderate invertase activity. In experiments at the study sites with sugar and amino acid solutions and with leaf or floral bud EFN mimics, dominant EFN-feeding ants differentiated between solutions as well as between mimics. The castration parasite Crematogaster dohrni (northern study site) was the least selective and did not exhibit any clear feeding preferences, while the largely trophobiont-tending non-protective Myrmicaria brunnea (middle study site) preferred higher sucrose concentrations and certain essential/non-essential amino acid mixtures. The mutualistic Technomyrmex albipes (southern study site) preferred sucrose over glucose or fructose solutions and consumed the leaf EFN mimic to a greater extent than the floral bud EFN mimic. This young leaf EFN mimic had low sugar concentrations, the lowest viscosity and sugar: amino acid ratio, was rich in essential amino acids, and appeared ideally suited to the digestive physiology of T. albipes. This preference for young leaf EFN may explain the greater protection afforded to young leaves than to floral buds by T. albipes, and may also help to resolve ant-pollinator conflicts. The differential response of dominant ants to sugar, amino acids, or solution viscosity suggests that plants can fine-tune their interactions with local ants via EFN composition. Thus, EFN can mediate local partner-choice mechanisms in ant-plant interactions.