96 resultados para NUCLEAR ABNORMALITIES
Resumo:
The conformational dependence of interproton distances in model proline peptides has been investigated in order to facilitate interpretation of the results of Nuclear Overhauser Effect (NOE) studies on such peptides. For this purpose two model systems, namely, Ac-Pro-NHMe and Ac-Pro-X-NHMe have been chosen and used. In the former, short interproton distances detectable in NOE experiments permit a clear distinction between conformations with Pro ψ = -300 (helical region) and those in which ψ is around 1200 (polyproline region). For the latter, the variation of distances between the protons of methyl amide and the Pro ring have been studied by superimposing on the Ramachandran map in the (φ3, ψ3) plane. The results show that β-turns and non-β-turn conformations can be readily distinguished from NOE data and such long range NOEs should be detectable for specific non-β-turn conformations. NOEs involving Cβ and Cγ protons are particularly sensitive to the state of pyrrolidine ring puckering.
Resumo:
Geometric phases have been used in NMR to implement controlled phase shift gates for quantum-information processing, only in weakly coupled systems in which the individual spins can be identified as qubits. In this work, we implement controlled phase shift gates in strongly coupled systems by using nonadiabatic geometric phases, obtained by evolving the magnetization of fictitious spin-1/2 subspaces, over a closed loop on the Bloch sphere. The dynamical phase accumulated during the evolution of the subspaces is refocused by a spin echo pulse sequence and by setting the delay of transition selective pulses such that the evolution under the homonuclear coupling makes a complete 2 pi rotation. A detailed theoretical explanation of nonadiabatic geometric phases in NMR is given by using single transition operators. Controlled phase shift gates, two qubit Deutsch-Jozsa algorithm, and parity algorithm in a qubit-qutrit system have been implemented in various strongly dipolar coupled systems obtained by orienting the molecules in liquid crystal media.
Resumo:
A two dimensional correlation experiment for the measurement of short and long range homo- and hetero- nuclear residual dipolar couplings (RDCs) from the broad and featureless proton NMR spectra including C-13 satellites is proposed. The method employs a single natural abundant C-13 spin as a spy nucleus to probe all the coupled protons and permits the determination of RDCs of negligible strengths. The technique has been demonstrated for the study of organic chiral molecules aligned in chiral liquid crystal, where additional challenge is to unravel the overlapped spectrum of enantiomers. The significant advantage of the method is demonstrated in better chiral discrimination using homonuclear RDCs as additional parameters. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The numerical values of gA are evaluated using quantum-chromodynamic sum rules. The nuclear medium effects are taken into account by modifying the chiral symmetry breaking correlation, . Our results indicate a quenching of gA in a nuclear medium. The physical reasons for this fundamental quenching are noted to be the same for the effective mass of the nucleon bound in a nucleus being less than its free space value.
Resumo:
The binding characteristics of the antibiotics to nuclei and their effect on the permeability of nuclear membrane with respect to histones and ribonucleic acids have been investigated. The binding constant for chromomycin A3 was found to be 1.4 × 104M?1 and number of binding sites was equal to 3.48 ± 1.08 × 1012 molecules/nuclei. The antibiotic chromomycin A3 enhanced the uptake of lysine-rich histone, actinomycin D decreased the uptake and ethidium bromide had no effect. Chromomycin A3 also enhanced the release of acid insoluble fraction containing RNA from the nuclei, actinomycin D and ethidium bromide inhibited the release of acid insoluble fraction containing RNA. The relevance of this finding to the role of nuclear envelope in understanding the mechanism of action of the antibiotic has been discussed.
Resumo:
IH NMR studies at 270 MHz on the synthetic alamethicin fragments Z-Aib-Pro-Aib-Ala-Aib-Ala-OMe (1-6), Boc-Gln-Aib-Val-Aib-Gly-Leu-Aib-OMe (7-1 3), Boc-Leu-Aib-Pro-Val-Aib-OMe (1 2-16), and Boc-Gly-Leu- Aib-Pro-Val-Aib-OMe (1 1-16) have been carried out in CDC13 and (CD3)2S0. The intramolecularly hydrogen bonded amide hydrogens in these peptides have been delineated by using solvent titration experiments and temperature coefficientsof NH chemical shifts in (CD3)+30. All the peptides adopt highly folded structures, characterized by intramolecular 4 - 1 hydrogen bonds. The 1-6 fragment adopts a 310 helical conformation with four hydrogen bonds, in agreement with earlier studies (Rao, Ch. P., Nagaraj, R., Rao, C. N. R., & Balaram, P. (1980) Biochemistry 19, 425-4311. The 7-13
Resumo:
Two isomeric, acyclic tetrapeptides containing a Z-dehydrophenylalanine residue (Δz-Phe) at position 2 or 3, Boc-Leu-Ala-Δz-Phe-Leu-OMe (1) and Boc-Leu-Δz-Phe-Ala-Leu-OMe (2), have been synthesized and their solution conformations investigated by 270MHz 1H n.m.r. spectroscopy. In peptide 1 the Leu(4) NH group appears to be partially shielded from solvent, while in peptide 2 both Ala(3) and Leu(4) NH groups show limited solvent accessibility. Extensive difference nuclear Overhauser effect (n.O.e.) studies establish the occurrence of several diagnostic inter-residue n.O.e.s (CαjH ⇆ Ni+1H and NiH ⇆ Ni+1H) between backbone protons. The simultaneous observation of “mutually exclusive” n.O.e.s suggests the presence of multiple solution conformations for both peptides. In peptide 1 the n.O.e. data are consistent with a dynamic equilibrium between an -Ala-Δz-Phe- Type II β-turn structure and a second species with Δz-Phe adopting a partially extended conformation with Ψ values of ± 100° to ± 150°. In peptide 2 the results are compatible with an equilibrium between a highly folded consecutive β-turn structure for the -Leu-Δz-Phe-Ala- segment and an almost completely extended conformation.
Resumo:
The effect of dipolar cross correlation in 1H---1H nuclear Overhauser effect experiments is investigated by detailed calculation in an ABX spin system. It is found that in weakly coupled spin systems, the cross-correlation effects are limited to single-quantum transition probabilities and decrease in magnitude as ωτc increases. Strong coupling, however, mixes the states and the cross correlations affect the zero-quantum and double-quantum transition probabilities as well. The effect of cross correlation in steady-state and transient NOE experiments is studied as a function of strong coupling and ωτc. The results for steady-state NOE experiments are calculated analytically and those for transient NOE experiments are calculated numerically. The NOE values for the A and B spins have been calculated by assuming nonselective perturbation of all the transitions of the X spin. A significant effect of cross correlation is found in transient NOE experiments of weakly as well as strongly coupled spins when the multiplets are resolved. Cross correlation manifests itself largely as a multiplet effect in the transient NOE of weakly coupled spins for nonselective perturbation of all X transitions. This effect disappears for a measuring pulse of 90° or when the multiplets are not resolved. For steady-state experiments, the effect of cross correlation is analytically zero for weakly coupled spins and small for strongly coupled spins.
Resumo:
The temperature dependence of the chlorine-35 n.q.r. in the mercuric chloride-4-picoline N-oxide complex has been studied from 77 K to room temperature, and the results are used to assign the observed frequencies to terminal and bridging chlorines.
Resumo:
The α→γ→α→β transitions of para-dichlorobenzene have been studied by employing infrared and n.q.r. spectroscopy as well as differential scanning calorimetry. The γ phase is associated with considerably higher values of some of the intramolecular vibration frequencies. The α→γ transition shows athermal nucleation behaviour as in martensitic transitions. Intermolecular vibration bands around 46 and 85 cm–1 present in γ and α phases disappear in the β phase. The α→β transition seems to be associated with some orientational disorder.
Resumo:
The simple two dimensional C-13-satellite J/D-resolved experiments have been proposed for the visualization of enantiomers, extraction of homo- and hetero-nuclear residual dipolar couplings and also H-1 chemical shift differences between the enantiomers in the anisotropic medium. The significant advantages of the techniques are in the determination of scalar couplings of bigger organic molecules. The scalar couplings specific to a second abundant spin such as F-19 can be selectively extracted from the severely overlapped spectrum. The methodologies are demonstrated on a chiral molecule aligned in the chiral liquid crystal medium and two different organic molecules in the isotropic solutions. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
13 C resonances of carbonyl and methyl groups in amides are shifted down-field on interaction with alkali and alkaline earth metal salts. The magnitude of the shift depends on the ionic potential of the cation. Ions like Li+ bind to the amide carbonyl group both in neat amide solutions as well as in concentrated salt solutions in water.
Resumo:
The conformation and stability of pearl millet prolamin (pennisetin) were examined by using circular dichroism and C-13 nuclear magnetic resonance spectroscopy. The far UV spectrum of pennisetin in 70% (v/v) aqueous ethanol showed the presence of predominant alpha-helical structure and its occurrence in the alpha + beta class of protein. The far and near UV spectra of pennisetin in ethanol: trifluoroethanol also supported this observation. However pennisetin showed the presence of some helical structure in 8 M urea which is known to be a highly unordered structure forming solvent. A decrease in alpha helical content of native pennisetin was observed with rise in temperature from 5-75-degrees-C and this effect of temperature was found to be reversible. A C-13 NMR spectrum of pennisetin in 70% ethanol suggested a high degree of molecular mobility in ethanol. Comparison of the cross polarization spectrum with the single pulse excitation spectrum suggested pennisetin to be a heterogeneous protein.
Resumo:
Oxide materials like perovskite, zirconolite, hollandite, pyrochlore, NASICON and sphene which are used for nuclear waste immobilization have been prepared by a solution combustion process. The process involves the combustion of stoichiometric amount of corresponding metal nitrates and carbohydrazide/tetraformyl trisazine/diformyl hydrazide at 450 degrees C. The combustion products have been characterized using powder X-ray diffraction, infrared spectroscopy, and Si-29 MAS-NMR. The fine particle nature of the combustion derived powders has been studied using density, particle size, BET surface area measurements and scanning electron microscopy. Sintering of combustion derived powder yields 85-95% dense ceramics in the temperature range 1000 degrees-1300 degrees C.