91 resultados para NOX ENZYMES


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A detailed study on the removal of oxides of nitrogen (NOx) from the filtered/unfiltered exhaust of a stationary diesel engine was carried out using non-thermal plasma (pulsed electrical discharge plasma) process and cascaded processes namely plasma- adsorbent and plasma-catalyst processes. The superior performance of discharge plasma with regard to NOx removal, energy consumption and formation of by-products in unfiltered exhaust environment is identified. In the cascaded plasma-adsorbent process, the plasma was cascaded with adsorbents (MS13X/Activated alumina/Activated charcoal). The cascaded process treating unfiltered exhaust exhibits a very high NOx removal compared to the individual processes and further, the cascaded process gives almost the same NOx removal efficiency irrespective of type of adsorbent used. In the cascaded plasma- catalyst process, the plasma was cascaded with activated alumina catalyst at high temperature. The synergy effect and improved performance of the cascaded process are explained. Further, experiments were conducted at room temperature as well as at higher temperatures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A detailed study on the removal of oxides of nitrogen (NOx) from the exhaust of a stationary diesel engine was carried out using non-thermal plasma (dielectric barrier discharge) process. The objective of the study was to explore the effect of different voltage energizations and exhaust composition on the NOx removal process. Three types of voltage energizations, namely AC, DC and Pulse were examined. Due to the ease of generation of high voltage AC/DC electrical discharges from automobile/Vehicular battery supply for possible retrofitting in exhaust cleaning circuit, it was found relevant to investigate individual energisation cases in detail for NOx removal. AC and Pulse energisations exhibit a superior NOx removal efficiency compared to DC energisation. However,Pulse energisation is found to be more energy efficient. Experiments were further carried out with filtered/ unfiltered (raw) exhaust under pulse energisations. The results were discussed with regard to NOx removal, energy consumption and formation of by-products.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes a compact electric discharge plasma source for controlling NOX emission in diesel engine exhaust. Boost converter is used to boost to solar powered battery voltage to 24V, further an automobile ignition coil was used to generate the high voltage pulse using fly-back topology. This design is aimed at retrofitting the existing catalytic converters with pulse assisted cleaning technique. In this paper we bring out a relative comparison of discharge plasma and plasma-adsorbent process at different gas flow rates. Activated alumina was used as adsorbent. The main emphasis is laid on the development of a compact pulse source from 12V battery, which is powered by the solar, for the removal of NOX from the filtered diesel engine exhaust.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reports improved performance of advantages when compared to its counterpart as it is cost discharge plasma in filtered engine exhaust treatment. Our effective, low capital and operation costs, salable by- paper deals about the removal of NOX emissions from the diesel products, and integration with the existing systems. In this exhaust by electric discharge plasma. For the treatment of diesel paper we describe an alternate reactor geometry referred to exhaust a new type of reactor referred to as cross-flow dielectric as cross-flow DBD reactor, where the exhaust gas flow barrier discharge reactor has been used, where the gas flow is perpendicular to the wire-cylinder reaction chamber. This perpendicular to the corona electrode. Experiments were reactor is used to treat the actual exhaust of a 3.75 kW diesel- conducted at different flow rates ranging from 2 l/min to 10 l/ generator set. The main emphasis is laid on the NOX treatment min. The discharge plasma assisted barrier discharge reactor of diesel engine exhaust. Experiments were carried out at has shown promising results in NOX removal at high flow rates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper a study on effect of different energization on removal of NOX in diesel engine exhaust has been presented. Here we made a detailed qualitative study of effect of pulsed/ac/dc voltage energizations on the NOX treatment of using conventional wire-cylinder reactor configuration. It was observed that amongst different energizations, pulse energization exhibits maximum NOX removal efficiency when compared to ac and dc energizations. For a given specific energy density, wire-cylinder reactor filled with BaTiO3 pellet gives higher NOX removal efficiency when compared to reactor without pellets under both pulse and ac energization. The dc energization does not have much impact on the removal processes. The paper further discusses the individual energization cases in detail.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Red mud is a waste by-product generated during the processing of bauxite, the most common ore of aluminium. With the presence of ferric oxide, high surface area, resistance to poisoning and low cost, red mud made itself a good alternative to the existing commercial automobile catalyst. The cascading of dielectric barrier discharge plasma with red mud improved the NOX removal from diesel engine exhaust significantly. The DeNO(X) efficiency with discharge plasma was 74% and that with red mud was 31%. The efficiency increased to 92% when plasma was cascaded with red mud catalyst operating at a temperature of 400 degrees C. The NOX removal was dominated by NO2 removal. The studies were conducted at different temperatures and the results were discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chemically synthesized ``pro-sensitizers'' release the sensitizer in the presence of lipase or beta-glucosidase, triggering a significant luminescence response from a lanthanide based hydrogel.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Restriction endonucleases interact with DNA at specific sites leading to cleavage of DNA. Bacterial DNA is protected from restriction endonuclease cleavage by modifying the DNA using a DNA methyltransferase. Based on their molecular structure, sequence recognition, cleavage position and cofactor requirements, restriction-modification (R-M) systems are classified into four groups. Type III R-M enzymes need to interact with two separate unmethylated DNA sequences in inversely repeated head-to-head orientations for efficient cleavage to occur at a defined location (25-27 bp downstream of one of the recognition sites). Like the Type I R-M enzymes, Type III R-M enzymes possess a sequence-specific ATPase activity for DNA cleavage. ATP hydrolysis is required for the long-distance communication between the sites before cleavage. Different models, based on 1D diffusion and/or 3D-DNA looping, exist to explain how the long-distance interaction between the two recognition sites takes place. Type III R-M systems are found in most sequenced bacteria. Genome sequencing of many pathogenic bacteria also shows the presence of a number of phase-variable Type III R-M systems, which play a role in virulence. A growing number of these enzymes are being subjected to biochemical and genetic studies, which, when combined with ongoing structural analyses, promise to provide details for mechanisms of DNA recognition and catalysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Enzymes utilizing pyridoxal 5'-phosphate dependent mechanism for catalysis are observed in all cellular forms of living organisms. PLP-dependent enzymes catalyze a wide variety of reactions involving amino acid substrates and their analogs. Structurally, these ubiquitous enzymes have been classified into four major fold types. We have carried out investigations on the structure and function of fold type I enzymes serine hydroxymethyl transferase and acetylornithine amino transferase, fold type n enzymes catabolic threonine deaminase, D-serine deaminase, D-cysteine desulfhydrase and diaminopropionate ammonia lyase. This review summarizes the major findings of investigations on fold type II enzymes in the context of similar studies on other PLP-dependent enzymes. Fold type II enzymes participate in pathways of both degradation and synthesis of amino acids. Polypeptide folds of these enzymes, features of their active sites, nature of interactions between the cofactor and the polypeptide, oligomeric structure, catalytic activities with various ligands, origin of specificity and plausible regulation of activity are briefly described. Analysis of the available crystal structures of fold type II enzymes revealed five different classes. The dimeric interfaces found in these enzymes vary across the classes and probably have functional significance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study provides an extensive and detailed numerical analysis of NO chemical kinetics in low calorific value H-2/CO syngas flames utilizing predictions by five chemical kinetic mechanisms available out of which four deal with H-2/CO while the fifth mechanism (GRI 3.0) additionally accounts for hydrocarbon chemistry. Comparison of predicted axial NO profiles in premixed flat flames with measurements at 1 bar, 3.05 bar and 9.15 bar shows considerably large quantitative differences among the various mechanisms. However, at each pressure, the quantitative reaction path diagrams show similar NO formation pathways for most of the mechanisms. Interestingly, in counterflow diffusion flames, the quantitative reaction path diagrams and sensitivity analyses using the various mechanisms reveal major differences in the NO formation pathways and reaction rates of important reactions. The NNH and N2O intermediate pathways are found to be the major contributors for NO formation in all the reaction mechanisms except GRI 3.0 in syngas diffusion flames. The GRI 3.0 mechanism is observed to predict prompt NO pathway as the major contributing pathway to NO formation. This is attributed to prediction of a large concentration of CH radical by the GRI 3.0 as opposed to a relatively negligible value predicted by all other mechanisms. Also, the back-conversion of NNH into N2O at lower pressures (2-4 bar) was uniquely observed for one of the five mechanisms. The net reaction rates and peak flame temperatures are used to correlate and explain the differences observed in the peak NO] at different pressures. This study identifies key reactions needing assessment and also highlights the need for experimental data in syngas diffusion flames in order to assess and optimize H-2/CO and nitrogen chemistry. Copyright (C) 2014, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With ever more stringent NOX emissions, it is necessary to examine removal of nitrogen oxide from diesel engine exhaust. This paper describes the study of NOX reduction from 5.9-kW stationary diesel engine exhaust under nanosecond pulse energization. Two plasma reactors characterized by dielectric barrier discharge has been designed, built, and evaluated. One of the reactor designs include nine numbers of electrodes kept in parallel, and the exhaust was allowed to pass axially, whereas the second reactor consists of nine parallel electrodes and the exhaust was allowed to pass radially. The reactors were individually tested for the treatment of nitrogen oxides for gas flow rate of 2, 5, and 10 L/min. Both the reactors have been individually tested, and results show an appreciable removal of NOX with equal discharge volume. From the results, it was found that both the reactors were an efficient NOX removal. With consumption of only 36 J/L, the reactors had shown a considerable 45% DeNO(X) efficiency.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Experiments were conducted at laboratory level to treat the oxides of nitrogen (NOx) present in raw and dry biodiesel exhaust utilizing a combination of electric discharge plasma and bauxite residue, i. e., red mud, an industrial waste byproduct from the aluminum industry. In this paper, the adsorption and a possible catalytic property of bauxite residue are discussed. Nonthermal plasma was generated using dielectric barrier discharges initiated by ac/repetitive pulse energization. The effect of corona electrodes on the plasma generation was qualitatively studied through NOx cleaning. The plasma reactor and adsorbent reactors were connected in cascade while treating the exhaust. The diesel generator, running on biodiesel fuel, was electrically loaded to study the effectiveness of the cascade system in cleaning the exhaust. Interestingly, under the laboratory conditions studied, plasma-bauxite residue combination has shown good synergistic properties and enhanced the NOx removal up to about 90%. With proper scaling up, the suggested cascade system may become an economically feasible option to treat the exhaust in larger installations. The results were discussed emphasizing the role of bauxite residue as an adsorbent and as a room temperature catalyst.