75 resultados para NOES- Nose Only Exposure System
Resumo:
Sensor network nodes exhibit characteristics of both embedded systems and general-purpose systems.A sensor network operating system is a kind of embedded operating system, but unlike a typical embedded operating system, sensor network operatin g system may not be real time, and is constrained by memory and energy constraints. Most sensor network operating systems are based on event-driven approach. Event-driven approach is efficient in terms of time and space.Also this approach does not require a separate stack for each execution context. But using this model, it is difficult to implement long running tasks, like cryptographic operations. A thread based computation requires a separate stack for each execution context, and is less efficient in terms of time and space. In this paper, we propose a thread based execution model that uses only a fixed number of stacks. In this execution model, the number of stacks at each priority level are fixed. It minimizes the stack requirement for multi-threading environment and at the same time provides ease of programming. We give an implementation of this model in Contiki OS by separating thread implementation from protothread implementation completely. We have tested our OS by implementing a clock synchronization protocol using it.
Resumo:
We observe linewidths below the natural linewidth for a probe laser on a degenerate two-level F -> F' transition, when the same transition is driven by a strong control laser. We take advantage of the fact that each level of the transition is made of multiple magnetic sublevels, and use the phenomenon of electromagnetically induced transparency (EIT) or absorption ( EIA) in multilevel systems. Optical pumping by the control laser redistributes the population so that only a few sublevels contribute to the probe absorption, an explanation which is verified by a density-matrix analysis of the relevant sublevels. We observe more than a factor of 3 reduction in linewidth in the D(2) line of Rb in room-temperature vapor. Such subnatural features vastly increase the scope of applications of EIT, such as high-resolution spectroscopy and tighter locking of lasers to atomic transitions, since it is not always possible to find a suitable third level. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Spatial Decision Support System (SDSS) assist in strategic decision-making activities considering spatial and temporal variables, which help in Regional planning. WEPA is a SDSS designed for assessment of wind potential spatially. A wind energy system transforms the kinetic energy of the wind into mechanical or electrical energy that can be harnessed for practical use. Wind energy can diversify the economies of rural communities, adding to the tax base and providing new types of income. Wind turbines can add a new source of property value in rural areas that have a hard time attracting new industry. Wind speed is extremely important parameter for assessing the amount of energy a wind turbine can convert to electricity: The energy content of the wind varies with the cube (the third power) of the average wind speed. Estimation of the wind power potential for a site is the most important requirement for selecting a site for the installation of a wind electric generator and evaluating projects in economic terms. It is based on data of the wind frequency distribution at the site, which are collected from a meteorological mast consisting of wind anemometer and a wind vane and spatial parameters (like area available for setting up wind farm, landscape, etc.). The wind resource is governed by the climatology of the region concerned and has large variability with reference to space (spatial expanse) and time (season) at any fixed location. Hence the need to conduct wind resource surveys and spatial analysis constitute vital components in programs for exploiting wind energy. SDSS for assessing wind potential of a region / location is designed with user friendly GUI’s (Graphic User Interface) using VB as front end with MS Access database (backend). Validation and pilot testing of WEPA SDSS has been done with the data collected for 45 locations in Karnataka based on primary data at selected locations and data collected from the meteorological observatories of the India Meteorological Department (IMD). Wind energy and its characteristics have been analysed for these locations to generate user-friendly reports and spatial maps. Energy Pattern Factor (EPF) and Power Densities are computed for sites with hourly wind data. With the knowledge of EPF and mean wind speed, mean power density is computed for the locations with only monthly data. Wind energy conversion systems would be most effective in these locations during May to August. The analyses show that coastal and dry arid zones in Karnataka have good wind potential, which if exploited would help local industries, coconut and areca plantations, and agriculture. Pre-monsoon availability of wind energy would help in irrigating these orchards, making wind energy a desirable alternative.
Resumo:
Fault-tolerance is due to the semiconductor technology development important, not only for safety-critical systems but also for general-purpose (non-safety critical) systems. However, instead of guaranteeing that deadlines always are met, it is for general-purpose systems important to minimize the average execution time (AET) while ensuring fault-tolerance. For a given job and a soft (transient) error probability, we define mathematical formulas for AET that includes bus communication overhead for both voting (active replication) and rollback-recovery with checkpointing (RRC). And, for a given multi-processor system-on-chip (MPSoC), we define integer linear programming (ILP) models that minimize AET including bus communication overhead when: (1) selecting the number of checkpoints when using RRC, (2) finding the number of processors and job-to-processor assignment when using voting, and (3) defining fault-tolerance scheme (voting or RRC) per job and defining its usage for each job. Experiments demonstrate significant savings in AET.
Resumo:
The tie lines between (CoXMg1−X)O solid solution with rock salt structure and orthosilicate solid solution (CoYMg1−Y)-Si0.5O2, and between orthosilicate and metasilicate (CoZMg1-Z)SiO3 crystalline solutions, have been determined experimentally at 1373 K. The compositions of coexisting phases have been determined by electron probe microanalysis (EPMA) and lattice parameter measurement on equilibrated samples. The metasilicate solid solution exists only for 0 > Z > 0.213. The activity of CoO in the rock salt solid solution was determined as a function of composition and temperature in the range of 1023 to 1373 K using a solid-state galvanic cell: Pt, (CoXMg1−X)O+Co|(Y2O3)ZrO2|Co+CoO, Pt The free energy of mixing of (CoXMg1−X)O crystalline solution can be expressed by the equation ΔGE=X(1 −X)[(6048 − 2.146T)X+ (8745 − 3.09T)(1 −X)] J·mol−1 The thermodynamic data for the rock salt phase is combined with information on interphase partitioning of Co and Mg to generate the mixing properties for the ortho- and metasilicate solid solutions. For the orthosilicate solution (CoYMg1 −Y)Si0.5O2 at 1373 K, the excess Gibbs free energy of mixing is given by the relation ΔGE=Y(1 −Y)[2805Y+ 3261(1 −Y)] J·mol−1 For the metasilicate solution (CoZMg1 −Z)SiO3 at the same temperature, the excess free energy can be expressed by the relation ΔGE=Z(1 −Z)[2570Z+ 3627(1 −Z)] J·mol−1
Resumo:
Phase relations in the pseudoternary system NiO-CaO-SiO2 at 1373 K are established. The coexisting phases are identified by X-ray diffraction and energy-dispersive X-ray analysis of equilibrated samples. There is only one quaternary oxide CaNiSi2O6 with clinopyroxene structure. The Gibbs energy of formation of CaNiSi2O6 is measured using a solid state galvanic cell incorporating stabilized zirconia as the solid electrolyte in the temperature range of 1000 to 1400 K:Pt, Ni + SiO2 + CaSiO3 + CaNiSi2O6 \ (Y2O3)ZrO2 \ Ni + NiO, Pt From the electromotive force (emf) of the cell, the Gibbs energy of formation of CaNiSi2O6 from NiO, SiO2, and CaSiO3 is obtained. To derive the Gibbs energy of formation of the quaternary oxide from component binary oxides, the free energy of formation of CaSiO, is determined separately using a solid state cell based on single crystal CaF2 as the electrolyte: Pt, O-2, CaO + CaF2 \ CaF2 \ CaSiO3 + SiO2 + CaF2, O-2, Pt The results can be expressed by the following equations: NiO (r.s) + CaO (r.s) + 2SiO(2) (qz) --> CaNiSi2O6 (pyr) Delta G degrees = -115,700 + 10.63T (+/-100) J mol(-1) CaO (r.s) + SiO2 (qz) --> CaSiO3 (wol) Delta G degrees = -90,030 -0.61T (+/-60) J mol(-1).
Resumo:
The standard Gibbs energies of formation of SrIrO3, Sr2IrO4 and Sr4IrO6 have been determined in the temperature range from 975 to 1400 K using solid-state cells with (Y2O3) ZrO2 as the electrolyte and pure oxygen gas at a pressure of 0.1 MPa as the reference electrode. For the design of appropriate working electrodes, phase relations in the ternary system Sr–Ir–O were investigated at 1350 K. The only stable oxide detected along the binary Ir–O was IrO2. Three ternary oxides, SrIrO3, Sr2IrO4 and Sr4IrO6, compositions of which fall on the join SrO–IrO2, were found to be stable. Each of the oxides coexisted with pure metal Ir. Therefore, three working electrodes were prepared consisting of mixtures of Ir+SrO+Sr4IrO6, Ir+Sr4IrO6+Sr2IrO4, and Ir+Sr2IrO4+SrIrO3. These mixtures unambiguously define unique oxygen chemical potentials under isothermal and isobaric conditions. Used for the measurements was a novel apparatus, in which a buffer electrode was introduced between reference and working electrodes to absorb the electrochemical flux of oxygen through the solid electrolyte. The buffer electrode prevented polarization of the measuring electrode and ensured accurate data. The standard Gibbs energies of formation of the compounds, obtained from the emf of the cells, can be represented by the following equations: View the MathML sourcem View the MathML source View the MathML source where Δf (ox)Go represents the standard Gibbs energy of formation of the ternary compound from its component binary oxides SrO and IrO2. Based on the thermodynamic information, chemical potential diagrams for the system Sr–Ir–O were developed.
Resumo:
An isothermal section of the phase diagram for (silver + rhodium + oxygen) at T = 1173 K has been established by equilibration of samples representing twelve different compositions, and phase identification after quenching by optical and scanning electron microscopy (s.e.m.), X-ray diffraction (x.r.d.), and energy dispersive analysis of X-rays (e.d.x.), Only one ternary oxide, AgRhO2, was found to be stable and a three phase region involving Ag, AgRhO2 and Rh2O3 was identified. The thermodynamic properties of AgRhO2 were measured using a galvanic cell in the temperature range 980 K to 1320 K. Yttria-stabilized zirconia was used as the solid electrolyte and pure oxygen gas at a pressure of 0.1 MPa was used as the reference electrode. The Gibbs free energy of formation of the ternary oxide from the elements, ΔfGo (AgRhO2), can be represented by two linear equations that join at the melting temperature of silver. In the temperature range 980 K to 1235 K, ΔfGo(AgRhO2)/(J . mol-1) = -249080 + 179.08 T/K (±120). Above the melting temperature of silver, in the temperature range 1235 K to 1320 K, ΔfGo(AgRhO2)/(J . mol-1) = -260400 + 188.24 T/K (±95). The thermodynamic properties of AgRhO2 at T = 298.15 K were evaluated from the high temperature data. The chemical potential diagram for (silver + rhodium + oxygen) at T = 1200 K was also computed on the basis of the results of this study.
Resumo:
Phase relations in the system Cu-La-O at 1200 K have been determined by equilibrating samples of different average composition at 1200 K, and phase analysis of quenched samples using optical microscopy, XRD, SEM and EDX. The equilibration experiments were conducted in evacuated ampoules, and under flowing inert gas and pure oxygen. There is only one stable binary oxide La2O3 along the binary La-O, and two oxides Cu2O and CuO along the binary Cu-O. The Cu-La alloys were found to be in equilibrium with La2O3. Two ternary oxides CuLaO2 and CuLa2O4+
Resumo:
An isothermal section of the system Al2O3-CaO-CoO at 1500 K has been established by equilibrating 22 samples of different compositions at high temperature and phase identification by optical and scanning electron microscopy, X-ray diffraction, and energy dispersive spectroscopy after quenching to room temperature. Only one quaternary oxide, Ca3CoAl4O10, was identified inside the ternary triangle. Based on the phase relations, a solid-state electrochemical cell was designed to measure the Gibbs energy of formation of Ca3CoAl4O10 in the temperature range from 1150 to 1500 K. Calcia-stabilized zirconia was used as the solid electrolyte and a mixture of Co + CoO as the reference electrode. The cell can be represented as: ( - )\textPt,\textCaAl 2 \textO 4 + \textCa 1 2 \textAl 1 4 \textO 3 3 + \textCa 3 \textCoAl 4 \textO 10 + \textCo//(CaO)ZrO 2 \text// \textCoO + \textCo,\text Pt ( + ). (−)PtCaAl2O4+Ca12Al14O33+Ca3CoAl4O10+Co//(CaO)ZrO2//CoO+Co Pt (+) From the emf of the cell, the standard Gibbs energy change for the Ca3CoAl4O10 formation reaction, CoO + 3/5CaAl2O4 + 1/5Ca12Al14O33 → Ca3CoAl4O10, is obtained as a function of temperature: \Updelta Gr\texto Unknown control sequence '\Updelta'/J mol−1 (±50) = −2673 + 0.289 (T/K). The standard Gibbs energy of formation of Ca3CoAl4O10 from its component binary oxides, Al2O3, CaO, and CoO is derived as a function of temperature. The standard entropy and enthalpy of formation of Ca3CoAl4O10 at 298.15 K are evaluated. Chemical potential diagrams for the system Al2O3-CaO-CoO at 1500 K are presented based on the results of this study and auxiliary information from the literature.
Resumo:
Static distance relays employing semiconductor devices as their active elements offer many advantages over the conventional electromagnetic and rectifier relays. The paper describes single-system and three-system static distance relays, which depend for their operation on the instantaneous-comparison or `block-spike¿ scheme. Design principles and typical discriminating and logic circuits are described for the new relaying equipment. The relaying circuitry has been devised for obtaining uniform performance on all kinds of faults, by the use of two phase detectors¿one for multiphase faults and one for earth faults. The phase detector for multiphase faults provides an improved polar characteristic in the complex-impedance plane, which fits only around the fault area of a transmission line. The other features of the relay are: reliable pickup for close-in faults, least susceptibility to maloperation under power-swing conditions, and reduction in cost and panel space required. The operating characteristics of the relays, as expressed by accuracy/range charts, are also presented.
Resumo:
Investigations into the variation of self-diffusivity with solute radius, density, and degree of disorder of the host medium is explored. The system consists of a binary mixture of a relatively smaller sized solute, whose size is varied and a larger sized solvent interacting via Lennard-Jones potential. Calculations have been performed at three different reduced densities of 0.7, 0.8, and 0.933. These simulations show that diffusivity exhibits a maximum for some intermediate size of the solute when the solute diameter is varied. The maximum is found at the same size of the solute at all densities which is at variance with the prediction of the levitation effect. In order to understand this anomaly, additional simulations were carried out in which the degree of disorder has been varied while keeping the density constant. The results show that the diffusivity maximum gradually disappears with increase in disorder. Disorder has been characterized by means of the minimal spanning tree. Simulations have also been carried out in which the degree of disorder is constant and only the density is altered. The results from these simulations show that the maximum in diffusivity now shifts to larger distances with decrease in density. This is in agreement with the changes in void and neck distribution with density of the host medium. These results are in excellent agreement with the predictions of the levitation effect. They suggest that the effect of disorder is to shift the maximum in diffusivity towards smaller solute radius while that of the decrease in density is to shift it towards larger solute radius. Thus, in real systems where the degree of disorder is lower at higher density and vice versa, the effect due to density and disorder have opposing influences. These are confirmed by the changes seen in the velocity autocorrelation function, self part of the intermediate scattering function and activation energy. (C) 2012 American Institute of Physics. http://dx.doi.org/10.1063/1.3701619]
Resumo:
Introduction of processor based instruments in power systems is resulting in the rapid growth of the measured data volume. The present practice in most of the utilities is to store only some of the important data in a retrievable fashion for a limited period. Subsequently even this data is either deleted or stored in some back up devices. The investigations presented here explore the application of lossless data compression techniques for the purpose of archiving all the operational data - so that they can be put to more effective use. Four arithmetic coding methods suitably modified for handling power system steady state operational data are proposed here. The performance of the proposed methods are evaluated using actual data pertaining to the Southern Regional Grid of India. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
The advent and evolution of geohazard warning systems is a very interesting study. The two broad fields that are immediately visible are that of geohazard evaluation and subsequent warning dissemination. Evidently, the latter field lacks any systematic study or standards. Arbitrarily organized and vague data and information on warning techniques create confusion and indecision. The purpose of this review is to try and systematize the available bulk of information on warning systems so that meaningful insights can be derived through decidable flowcharts, and a developmental process can be undertaken. Hence, the methods and technologies for numerous geohazard warning systems have been assessed by putting them into suitable categories for better understanding of possible ways to analyze their efficacy as well as shortcomings. By establishing a classification scheme based on extent, control, time period, and advancements in technology, the geohazard warning systems available in any literature could be comprehensively analyzed and evaluated. Although major advancements have taken place in geohazard warning systems in recent times, they have been lacking a complete purpose. Some systems just assess the hazard and wait for other means to communicate, and some are designed only for communication and wait for the hazard information to be provided, which usually is after the mishap. Primarily, systems are left at the mercy of administrators and service providers and are not in real time. An integrated hazard evaluation and warning dissemination system could solve this problem. Warning systems have also suffered from complexity of nature, requirement of expert-level monitoring, extensive and dedicated infrastructural setups, and so on. The user community, which would greatly appreciate having a convenient, fast, and generalized warning methodology, is surveyed in this review. The review concludes with the future scope of research in the field of hazard warning systems and some suggestions for developing an efficient mechanism toward the development of an automated integrated geohazard warning system. DOI: 10.1061/(ASCE)NH.1527-6996.0000078. (C) 2012 American Society of Civil Engineers.
Resumo:
In large flexible software systems, bloat occurs in many forms, causing excess resource utilization and resource bottlenecks. This results in lost throughput and wasted joules. However, mitigating bloat is not easy; efforts are best applied where savings would be substantial. To aid this we develop an analytical model establishing the relation between bottleneck in resources, bloat, performance and power. Analyses with the model places into perspective results from the first experimental study of the power-performance implications of bloat. In the experiments we find that while bloat reduction can provide as much as 40% energy savings, the degree of impact depends on hardware and software characteristics. We confirm predictions from our model with selected results from our experimental study. Our findings show that a software-only view is inadequate when assessing the effects of bloat. The impact of bloat on physical resource usage and power should be understood for a full systems perspective to properly deploy bloat reduction solutions and reap their power-performance benefits.