227 resultados para NITROGEN MATRIX
Resumo:
Evidence for the generalized anomeric effect (GAE) in the N-acyl-1,3-thiazolidines, an important structural motif in the penicillins, was sought in the crystal structures of N-(4-nitrobenzoyl)-1,3-thiazolidine and its (2:1) complex with mercuric chloride, N-acetyl-2-phenyl-1,3-thiazolidine, and the (2:1) complex of N-benzoyl-1,3-thiazolidine with mercuric bromide. An inverse relationship was generally observed between the. C-2-N and C-2-S bond lengths of the thiazolidine ring, supporting the existence of the GAE. (Maximal bond length changes were similar to 0.04 angstrom for C-2-N-3, S-1-C-2, and similar to 0.08 angstrom for N-3-C-6.) Comparison with N-acylpyrrolidines and tetrahydrothiophenes indicates that both the nitrogen-to-sulphur and sulphur-to-nitrogen GAE's operate simultaneously in the 1,3-thiazolidines, the former being dominant. (This is analogous to the normal and exo-anomeric effects in pyranoses, and also leads to an interesting application of Baldwin's rules.) The nitrogen-to-sulphur GAE is generally enhanced in the mercury(II) complexes (presumably via coordination at the sulphur); a 'competition' between the GAE and the amide resonance of the N-acyl moiety is apparent. There is evidence for a 'push-pull' charge transfer between the thiazolidine moieties in the mercury(II) complexes, and for a 'back-donation' of charge from the bromine atoms to the thiazolidine moieties in the HgBr2 complex. (The sulphur atom appears to be sp(2) hybridised in the mercury(II) complexes, possibly for stereoelectronic reasons.) These results are apparently relevant to the mode of action of the penicillins. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Here we report on the magnetic properties of iron carbide nanoparticles embedded in a carbon matrix. Granular distributions of nanoparticles in an inert matrix, of potential use in various applications, were prepared by pyrolysis of organic precursors using the thermally assisted chemical vapour deposition method. By varying the precursor concentration and preparation temperature, compositions with varying iron concentration and nanoparticle sizes were made. Powder x-ray diffraction, transmission electron microscopy and Mossbauer spectroscopy studies revealed the nanocrystalline iron carbide (Fe3C) presence in the partially graphitized matrix. The dependence of the magnetic properties on the particle size and temperature (10 K < T < 300 K) were studied using superconducting quantum interference device magnetometry. Based on the affect of surrounding carbon spins, the observed magnetic behaviour of the nanoparticle compositions, such as the temperature dependence of magnetization and coercivity, can be explained.
Resumo:
A modified density matrix renormalization group (DMRG) algorithm is applied to the zigzag spin-1/2 chain with frustrated antiferromagnetic exchange J(1) and J(2) between first and second neighbors. The modified algorithm yields accurate results up to J(2)/J(1) approximate to 4 for the magnetic gap Delta to the lowest triplet state, the amplitude B of the bond order wave phase, the wavelength lambda of the spiral phase, and the spin correlation length xi. The J(2)/J(1) dependences of Delta, B, lambda, and xi provide multiple comparisons to field theories of the zigzag chain. The twist angle of the spiral phase and the spin structure factor yield additional comparisons between DMRG and field theory. Attention is given to the numerical accuracy required to obtain exponentially small gaps or exponentially long correlations near a quantum phase transition.
Resumo:
This paper investigates the feasibility of an on-line damage detection capability for helicopter main rotor blades made of composite material. Damage modeled in the composite is matrix cracking. A box-beam with stiffness properties similar to a hingeless rotor blade is designed using genetic algorithm for the typical [+/-theta(m)/90(n)](s) family of composites. The effect of matrix cracks is included in an analytical model of composite box-beam. An aeroelastic analysis of the helicopter rotor based on finite elements in space and time is used to study the effects of matrix cracking in the rotor blade in forward flight. For global fault detection, rotating frequencies, tip bending and torsion response, and blade root loads are studied. It is observed that the effect of matrix cracking on lag bending and elastic twist deflection at the blade tip and blade root yawing moment is significant and these parameters can be monitored for online health monitoring. For implementation of local fault detection technique, the effect on axial and shear strain, for matrix cracks in the whole blade as well as matrix cracks occurring locally is studied. It is observed that using strain measurement along the blade it is possible to locate the matrix cracks as well as to predict density of matrix cracks. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
The mulberry leaves were shown to harbour substantial populations of bacteria, streptomycetes, yeasts, and moulds. Azotobacter and Beijerinckia were observed to contribute to nearly 5 to 10 per cent of the bacterial population. When grown in water culture under sterile conditions, Azotobacter inoculation on the leaf or root surface was found to increase plant growth, dry wt, and nitrogen content of the mulberry. The beneficial effect of Azotobacter was largely influenced by the presence of a carbon source in the plant nutrient solution. The root inoculation in comparison to leaf application was found to confer greater benefits to the growing plant. The presence of carbohydrates and amino acids in the leaf leachates of mulberry was shown. The mutual beneficial nature of the association of the plant and Azotobacter has been brought to light.
Resumo:
A new stress-strain law, which is a three parameter representation of stress in terms of strain has been proposed for the matrix displacement analysis of structures made of non-hookean materials. This formula has been utilized to study three typical problems. These studies brought out the effectiveness and suitability of this law for matrix displacement analysis.
Resumo:
Al-4.4 a/oZn and Al-4.4 a/oZn with Ag, Ce, Dy, Li, Nb, Pt, Y, or Yb, alloys have been investigated by resistometry with a view to study the solute-vacancy interactions and clustering kinetics in these alloys. Solute-vacancy binding energies have been evaluated for all these elements by making use of appropriate methods of evaluation. Ag and Dy additions yield some interesting results and these have been discussed in the thesis. Solute-vacancy binding energy values obtained here have been compared with other available values and discussed. A study of the type of interaction between vacancies and solute atoms indicates that the valency effect is more predominant than the elastic effect.
Resumo:
A laminated composite plate model based on first order shear deformation theory is implemented using the finite element method.Matrix cracks are introduced into the finite element model by considering changes in the A, B and D matrices of composites. The effects of different boundary conditions, laminate types and ply angles on the behavior of composite plates with matrix cracks are studied.Finally, the effect of material property uncertainty, which is important for composite material on the composite plate, is investigated using Monte Carlo simulations. Probabilistic estimates of damage detection reliability in composite plates are made for static and dynamic measurements. It is found that the effect of uncertainty must be considered for accurate damage detection in composite structures. The estimates of variance obtained for observable system properties due to uncertainty can be used for developing more robust damage detection algorithms. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The mechanical properties of Al-Zn-Mg alloy reinforced with SiCP composites prepared by solidification route were studied by altering the matrix strength with different heat treatments. With respect to the control alloy, the composites have shown similar ageing behaviour in terms of microhardness data at 135 degrees C. It was shown that although composites exhibited enhanced modulus values, the strengthening was found to be dependent on the damage that is occurring during straining. Thus the initial matrix strength plays an important role in determining the strengthening. Consequently, compression data had shown a different trend compared to tension. (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
Proton transfer across cationic hydrogen bonds involving Schiff base, ammonia and related compounds has been studied at the 4-31G level. Proton transfer characteristics are correlated to the proton affinities of the species involved. Hydrogen bond strengths of these hydrogen bonds are correlated to the differences in the proton affinity of the donor and the acceptor. Influence of a neighbouring hydrogen bond on the proton transfer from Schiff base to ammonia and Schiff base to water is also discussed.