177 resultados para Morgan Theorem
Resumo:
This paper describes a switching theoretic algorithm for the folding of programmable logic arrays (PLA). The algorithm is valid for both column and row folding, although it has been presented considering only the simple column folding. The pairwise compatibility relations among all the pairs of the columns of the PLA are mapped into a square matrix, called the compatibility matrix of the PLA. A foldable compatibility matrix (FCM), a new concept introduced by the author, is then derived from the compatibility matrix. A new theorem called the folding theorem is then proved. The theorem states that the existence of an m by 2m FCM is both necessary and sufficient to fold 2m columns of the n column PLA (2m ≤ n). Once an FCM is obtained, the ordered pairs of foldable columns and the re-ordering of the rows are readily determined.
Resumo:
The stress problem of two equal circular elastic inclusions in a pressurised cylindrical shell has been solved by using single inclusion solutions together with Graf’s addition theorem. The effect of the inter-inclusion distance on the interface stresses in the shell as well as in the inclusion is studied. The results obtained for small values of curvature parameter fi @*=(a*/8Rt) [12(1-v*)]“*, a, R, t being inclusion radius and shell radius and thickness) when compared with the flat-plate results show good agreement. The results obtained in non-dimensional form are presented graphically.
Resumo:
The relationship between EUF extractable nutrients and conventional soil test extractable nutrients in the acid soils of Southern India on one hand and that between EUF values and tea productivity on the other are described. Close correlation exists between EUF-NO3–N at 20°C and CuSO4–Ag2SO4-extractable NO3–N (r=0.98***), EUF-Norg and Morgan's reagent extractable NH4–N (r=0.97***), total EUF-N and CuSO4–Ag2SO4-extractable NO3–N plus Morgan's reagent NH4–N (r=0.96***), EUF-P at 20°C and modified Bray II-P (r=0.93***) and EUF-P at 20°C plus that at 80°C and modified Bray II-P (r=0.91***). The EUF-K at 20°C shows close correlation with NH4OAc–K (r=0.80***), Ag-thiourea-K (r=0.86***) and Morgan's reagent-K (r=0.84***) whereas the EUF-K at 80°C shows close correlation with the difference in K contents of NH4OAc–K and Ag-thiourea-K (r=0.92***) or of NH4OAc–K and Morgan's reagent-K (r=0.93***) and fixed NH4–N (r=0.89***). EUF-Ca, EUF-Mg and EUF-Mn do not show any relationship with conventional soil test values. Tea productivity is strongly associated with EUF-N and EUF-P extracted at 20°C.
Resumo:
Brooks' Theorem says that if for a graph G,Δ(G)=n, then G is n-colourable, unless (1) n=2 and G has an odd cycle as a component, or (2) n>2 and Kn+1 is a component of G. In this paper we prove that if a graph G has none of some three graphs (K1,3;K5−e and H) as an induced subgraph and if Δ(G)greater-or-equal, slanted6 and d(G)<Δ(G), then χ(G)<Δ(G). Also we give examples to show that the hypothesis Δ(G)greater-or-equal, slanted6 can not be non-trivially relaxed and the graph K5−e can not be removed from the hypothesis. Moreover, for a graph G with none of K1,3;K5−e and H as an induced subgraph, we verify Borodin and Kostochka's conjecture that if for a graph G,Δ(G)greater-or-equal, slanted9 and d(G)<Δ(G), then χ(G)<Δ(G).
Resumo:
The parametric resonance in a system having two modes of the same frequency is studied. The simultaneous occurence of the instabilities of the first and second kind is examined, by using a generalized perturbation procedure. The region of instability in the first approximation is obtained by using the Sturm's theorem for the roots of a polynomial equation.
Resumo:
This paper describes the application of vector spaces over Galois fields, for obtaining a formal description of a picture in the form of a very compact, non-redundant, unique syntactic code. Two different methods of encoding are described. Both these methods consist in identifying the given picture as a matrix (called picture matrix) over a finite field. In the first method, the eigenvalues and eigenvectors of this matrix are obtained. The eigenvector expansion theorem is then used to reconstruct the original matrix. If several of the eigenvalues happen to be zero this scheme results in a considerable compression. In the second method, the picture matrix is reduced to a primitive diagonal form (Hermite canonical form) by elementary row and column transformations. These sequences of elementary transformations constitute a unique and unambiguous syntactic code-called Hermite code—for reconstructing the picture from the primitive diagonal matrix. A good compression of the picture results, if the rank of the matrix is considerably lower than its order. An important aspect of this code is that it preserves the neighbourhood relations in the picture and the primitive remains invariant under translation, rotation, reflection, enlargement and replication. It is also possible to derive the codes for these transformed pictures from the Hermite code of the original picture by simple algebraic manipulation. This code will find extensive applications in picture compression, storage, retrieval, transmission and in designing pattern recognition and artificial intelligence systems.
Resumo:
Considers the magnetic response of a charged Brownian particle undergoing a stochastic birth-death process. The latter simulates the electron-hole pair production and recombination in semiconductors. The authors obtain non-zero, orbital diamagnetism which can be large without violating the Van Leeuwen theorem (1921).
Resumo:
A new analysis of the nature of the solutions of the Hamilton-Jacobi equation of classical dynamics is presented based on Caratheodory’s theorem concerning canonical transformations. The special role of a principal set of solutions is stressed, and the existence of analogous results in quantum mechanics is outlined.
Resumo:
A theorem termed the Geometrical Continuity Theorem is enunciated and proven. This theorem throws light on the aspects of the continuity of the proportional portion with the base weir portion. These two portions constitute the profile of a proportional weir. A weir of this type with circular bottom is designed. The theorem is used to establish the continuity at the junction of the proportional and the base weir portions of this weir. The coordinates of the weir profile are obtained by numerical methods and are furnished in tabular form for ready use by designers. The discharge passing through the weir is a linear function of the head. The verification of the assumed linear discharge-head relation is furnished for one of the three weirs with which experiments were conducted. The coefficient of discharge for this typical weir is found to be a constant with a value of 0.59.
Resumo:
Vibrational stability of a large flexible, structurally damped spacecraft subject to large rigid body rotations is analysed modelling the system as an elastic continuum. Using solution of rigid body attitude motion under torque free conditions and modal analysis, the vibrational equations are reduced to ordinary differential equations with time-varying coefficients. Stability analysis is carried out using Floquet theory and Sonin-Polya theorem. The cases of spinning and non-spinning spacecraft idealized as a flexible beam plate undergoing simple structural vibration are analysed in detail. The critical damping required for stabilization is shown to be a function of the spacecraft's inertia ratio and the level of disturbance.
Resumo:
Compton profile data are used to investigate the ground state wavefunction of graphite. The results of two new $\gamma$-ray measurements are reported and compared with the results of earlier $\gamma$-ray and electron scattering measurements. A tight-binding calculation has been carried out and the results of earlier calculations based on a molecular model and a pseudo-potential wavefunction are considered. The analysis, in terms of the reciprocal form factor, shows that none of the calculations gives an adequate description of the data in the basal plane although the pseudo-potential calculation describes the anisotropy in the plane reasonably well. In the basal plane the zero-crossing theorem appears to be violated and this problem must be resolved before more accurate models can be derived. In the c-axis direction the molecular model and the tight binding calculation give better agreement with the experimental data than does the pseudopotential calculation.
Resumo:
CTRU, a public key cryptosystem was proposed by Gaborit, Ohler and Sole. It is analogue of NTRU, the ring of integers replaced by the ring of polynomials $\mathbb{F}_2[T]$ . It attracted attention as the attacks based on either LLL algorithm or the Chinese Remainder Theorem are avoided on it, which is most common on NTRU. In this paper we presents a polynomial-time algorithm that breaks CTRU for all recommended parameter choices that were derived to make CTRU secure against popov normal form attack. The paper shows if we ascertain the constraints for perfect decryption then either plaintext or private key can be achieved by polynomial time linear algebra attack.
Resumo:
Dimensional analysis using π-theorem is applied to the variables associated with plastic deformation. The dimensionless groups thus obtained are then related and rewritten to obtain the constitutive equation. The constants in the constitutive equation are obtained using published flow stress data for carbon steels. The validity of the constitutive equation is tested for steels with up to 1.54 wt%C at temperatures: 850–1200 °C and strain rates: 6 × 10−6–2 × 10−2 s−1. The calculated flow stress agrees favorably with experimental data.
Resumo:
A modified form of Green's integral theorem is employed to derive the energy identity in any water wave diffraction problem in a single-layer fluid for free-surface boundary condition with higher-order derivatives. For a two-layer fluid with free-surface boundary condition involving higher-order derivatives, two forms of energy identities involving transmission and reflection coefficients for any wave diffraction problem are also derived here by the same method. Based on this modified Green's theorem, hydrodynamic relations such as the energy-conservation principle and modified Haskind–Hanaoka relation are derived for radiation and diffraction problems in a single as well as two-layer fluid.
Resumo:
Coherently moving flocks of birds, beasts, or bacteria are examples of living matter with spontaneous orientational order. How do these systems differ from thermal equilibrium systems with such liquid crystalline order? Working with a fluidized monolayer of macroscopic rods in the nematic liquid crystalline phase, we find giant number fluctuations consistent with a standard deviation growing linearly with the mean, in contrast to any situation where the central limit theorem applies. These fluctuations are long-lived, decaying only as a logarithmic function of time. This shows that flocking, coherent motion, and large-scale inhomogeneity can appear in a system in which particles do not communicate except by contact.