64 resultados para Molecular biology|Microbiology|Oceanography
Resumo:
Gelonin is a single chain ribosome inactivating protein (RIP) with potential application in the treatment of cancer and AIDS. Diffraction quality crystals grown using PEG3350, belong to the space group P2(1), with it a = 49.4 Angstrom b = 44.9 Angstrom, c = 137.4 Angstrom and beta = 98.4 degrees, and contain two molecules in the asymmetric unit. Diffraction data collected to 1.8 Angstrom resolution has a R(m) value of 7.3%. Structure of gelonin has been solved by the molecular replacement method, using ricin A chain as the search model. Crystallographic refinement using X-PLOR resulted in a model for which the r.m.s deviations from ideal bond lengths and bond angles are 0.012 Angstrom and 2.7 degrees, respectively The final R-factor is 18.4% for 39,806 reflections for which I > 1.0 sigma(I).The C-alpha atoms of the two molecules in the asymmetric unit superpose to within 0.38 Angstrom for 247 atom pairs. The overall fold of gelonin is similar to that of other RIPs such as ricin A chain and alpha-momorcharin, the r.m.s.d. for C-alpha superpositions being 1.3 and 1.4 Angstrom, respectively The-catalytic residues (Glu166, Arg169 and Tyr113) in the active site form a hydrogen bond scheme similar to that observed in other RIPs. The conformation of Tyr74 in the active site, however, is significantly different from that in alpha-momorcharin. Three well defined water molecules are located in the active site cavity and one of them, X319, superposes to within 0.2 Angstrom of a corresponding water molecule in the structure of alpha-momorcharin. Any of the three could be the substrate water molecule in the hydrolysis reaction catalysed by gelonin.Difference electron density for a N-linked sugar moiety has been observed near only one of the two potential glycosylation sites in the sequence. The amino acid at position 239 has been established as Lys by calculation of omit electron density maps.The two cysteine residues in the sequence, Cys44 and Cys50, form a disulphide bond, and are therefore not available for disulphide conjugation with antibodies. Based on the structure, the region of the molecule that is involved in intradimer interactions is suggested to be suitable for introducing a Cys residue for purposes of conjugation with an antibody to produce useful immunotoxins.
Resumo:
Fenvalerate is a pyrethroid insecticide which interacts with ionic channels. Using circular dichroism technique we have studied the interaction of fenvalerate with gramicidin, a model channel peptide which transports ions. In most organic solvents, gramicidin exists as a double helix except in trifluoroethanol where it exists as a channel forming single stranded beta(6.3) helical monomer. In model lipid membranes, under certain experimental conditions, gramicidin exists as a channel forming single stranded beta(6.3) helical dimer. Our results show that fenvalerate interacts more with the single stranded beta(6.3) helical monomer or dimer than with the double helical form of gramicidin. This was further confirmed by an increase in the rate of gramicidin mediated proton transport in liposomes by fenvalerate, using the pH sensitive fluorophore, pyranine.
Resumo:
The mouse and human malarial parasites, Plasmodium berghei and Plasmodium falciparum, respectively, synthesize heme de novo following the standard pathway observed in animals despite the availability of large amounts of heme, derived from red cell hemoglobin, which is stored as hemozoin pigment, The enzymes, delta-aminolevulinate dehydrase (ALAD), coproporphyrinogen oxidase, and ferrochelatase are present at strikingly high levels in the P, berghei infected mouse red cell in vivo, The isolated parasite has low levels of ALAD and the data clearly indicate it to be of red cell origin. The purified enzyme preparations from the uninfected red cell and the parasite are identical in kinetic properties, subunit molecular weight, cross-reaction with antibodies to the human enzyme, and N-terminal amino acid sequence. Immunogold electron microscopy of the infected culture indicates that the enzyme is present inside the parasite and, therefore, is not a contaminant, The parasite derives functional ALAD from the host and the enzyme binds specifically to isolated parasite membrane in vitro, suggestive of the involvement of a receptor in its translocation into the parasite, While, ALAD, coproporphyrinogen oxidase, and ferrochelatase from the parasite and the uninfected red cell supernatant have identical subunit molecular weights on SDS-polyacrylamide gel electrophoresis and show immunological cross-reaction with antibodies to the human enzymes, as revealed by Western analysis, the first enzyme of the pathway, namely, delta-aminolevulinate synthase (ALAS) in the parasite, unlike that of the red cell host, does not cross-react with antibodies to the human enzyme, However, ALAS enzyme activity in the parasite is higher than that of the infected red cell supernatant. We therefore conclude that the parasite, while making its own ALAS, imports ALAD and perhaps most of the other enzymes of the pathway from the host to synthesize heme de novo, and this would enable it to segregate this heme from the heme derived from red cell hemoglobin degradation, ALAS of the parasite and the receptor(s) involved in the translocation of the host enzymes into the parasite would be unique drug targets.
Resumo:
Addition of estradiol 17-beta to first trimester human placental minces resulted in an increased synthesis of a protein of apparent molecular weight 45 kDa. The specific involvement of estrogen in the stimulation of this protein was established by demonstrating a reduction in the level of this protein by the addition of CCS 16949 A, an inhibitor of aromatase, a key enzyme in the biosynthesis of estradiol 17-beta and ICI 182,780, an estrogen receptor antagonist. The protein was purified to homogeneity and N-terminal sequencing of two of the internal peptides obtained by enzymatic digestion of the protein, as well as the absence of a free N-terminal indicated that it could be actin. This was confirmed by Western blotting using commercially available actin antiserum. The role of estradiol 17-beta in the stimulation of actin synthesis in human placenta was also established by monitoring the quantitative inhibition of DNase I by actin.
Resumo:
Telomeres are the termini of linear eukaryotic chromosomes consisting of tandem repeats of DNA and proteins that bind to these repeat sequences. Telomeres ensure the complete replication of chromosome ends, impart protection to ends from nucleolytic degradation, end-to-end fusion, and guide the localization of chromosomes within the nucleus. In addition, a combination of genetic, biochemical, and molecular biological approaches have implicated key roles for telomeres in diverse cellular processes such as regulation of gene expression, cell division, cell senescence, and cancer. This review focuses on recent advances in our understanding of the organization of telomeres, telomere replication, proteins that bind telomeric DNA, and the establishment of telomere length equilibrium.
Resumo:
The effect of pH on the unfolding pathway acid the stability of the toxic protein abrin-II have been studied by increasing denaturant concentrations of guanidine hydrochloride and by monitoring the change in 8,1-anilino naphthalene sulfonic acid (ANS) fluorescence upon binding to the hydrophobic sites of the protein. Intrinsic protein fluorescence, far and near UV-circular dichroism (CD) spectroscopy and ANS binding studies reveal that the unfolding of abrin-II occurs through two intermediates at pH 7.2 and one intermediate at pH 4.5. At pH 7.2, the two subunits A and B of abrin-II unfold sequentially. The native protein is more stable at pH 4.5 than at pH 7.2. However, the stability of the abrin-II A-subunit is not affected by a change in pH. These observations may assist in an understanding of the physiologically relevant transmembrane translocation of the toxin.
Resumo:
Among the human diseases that result from chromosomal aberrations, a de novo deletion in chromosome 11p13 is clinically associated with a syndrome characterized by Wilms' tumor, aniridia, genitourinary anomalies, and mental retardation (WAGR). Not all genes in the deleted region have been characterized biochemically or functionally. We have recently identified the first Class III cyclic nucleotide phosphodiesterase, Rv0805, from Mycobacterium tuberculosis, which biochemically and structurally belongs to the superfamily of metallophosphoesterases. We performed a large scale bioinformatic analysis to identify orthologs of the Rv0805 protein and identified many eukaryotic genes that included the human 239FB gene present in the region deleted in the WAGR syndrome. We report here the first detailed biochemical characterization of the rat 239FB protein and show that it possesses metallophosphodiesterase activity. Extensive mutational analysis identified residues that are involved in metal interaction at the binuclear metal center. Generation of a rat 239FB protein with a mutation corresponding to a single nucleotide polymorphism seen in human 239FB led to complete inactivation of the protein. A close ortholog of 239FB is found in adult tissues, and biochemical characterization of the 239AB protein demonstrated significant hydrolytic activity against 2',3'-cAMP, thus representing the first evidence for a Class III cyclic nucleotide phosphodiesterase in mammals. Highly conserved orthologs of the 239FB protein are found in Caenorhabditis elegans and Drosophila and, coupled with available evidence suggesting that 239FB is a tumor suppressor, indicate the important role this protein must play in diverse cellular events.
Resumo:
RecJ exonuclease plays crucial roles in several DNA repair and recombination pathways, and its ubiquity in bacterial species points to its ancient origin and vital cellular function. RecJ exonuclease from Haemophilus influenzae is a 575-amino-acid protein that harbors the characteristic motifs conserved among RecJ homologs. The purified protein exhibits a process 5'-3' single-stranded-DNA-specific exonuclease activity. The exonuclease activity of H. influenzae RecJ (HiRecJ) was supported by Mg2+ or Mn2+ and inhibited by Cd2+ suggesting a different mode of metal binding in HiRecJ as compared to Escherichia coli RecJ (EcoRecJ). Site-directed mutagenesis of highly conserved residues in HiRecJ abolished enzymatic activity. Interestingly, substitution of alanine for aspartate 77 resulted in a catalytically inactive enzyme that bound to DNA with a significantly higher affinity as compared to the wild-type enzyme. Noticeably, steady-state kinetic studies showed that H. influenzae single-stranded DNA-binding protein (HiSSB) increased the affinity of HiRecJ for single-stranded DNA and stimulated its exonuclease activity. HiSSB, whose C-terminal tail had been deleted, failed to enhance RecJ exonuclease activity. More importantly, HiRecJ was found to directly associate with its cognate single-stranded DNA-binding protein (SSB), as demonstrated by various in vitro assays, Interaction studies carried out with the truncated variants of HiRecJ and HiSSB revealed that the two proteins interact via the C-terminus of SSB protein and the core-catalytic domain of RecJ. Taken together, these results emphasize direct interactio between RecJ and SSB, which confers functional cooperativity to these two proteins. In addition, these results implicate SSB as being involved in the recruitment of RecJ to DNA and provide insights into the interplay between these proteins in repair and recombination pathways.
Resumo:
Assembly intermediates of icosahedral viruses are usually transient and are difficult to identify. In the present investigation, site-specific and deletion mutants of the coat protein gene of physalis mottle tymovirus (PhMV) were used to delineate the role of specific amino acid residues in the assembly of the virus and to identify intermediates in this process. N-terminal 30, 34, 35 and 39 amino acid deletion and single C-terminal (N188) deletion mutant proteins of PhMV were expressed in Escherichia coli. Site-specific mutants H69A, C75A, W96A, D144N, D144N-T151A, K143E and N188A were also constructed and expressed. The mutant protein lacking 30 amino acid residues from the N terminus self-assembled to T = 3 particles in vivo while deletions of 34, 35 and 39 amino acid residues resulted in the mutant proteins that were insoluble. Interestingly, the coat protein (pR PhCP) expressed using pRSET B vector with an additional 41 amino acid residues at the N terminus also assembled into T = 3 particles that were more compact and had a smaller diameter. These results demonstrate that the amino-terminal segment is flexible and either the deletion or addition of amino acid residues at the N terminus does not affect T = 3 capsid assembly, in contrast, the deletion of even a single residue from the C terminus (PhN188 Delta 1) resulted in capsids that were unstable. These capsids disassembled to a discrete intermediate with a sedimentation coefficent of 19.4 S. However, the replacement of C-terminal asparagine 188 by alanine led to the formation of stable capsids. The C75A and D144N mutant proteins also assembled into capsids that were as stable as the pR PhCP, suggesting that C75A and D144 are not crucial for the T = 3 capsid assembly. pR PhW96A and pR PhD144N-T151A mutant proteins failed to form capsids and were present as heterogeneous aggregates. Interestingly, the pR PhK143E mutant protein behaved in a manner similar to the C-terminal deletion protein in forming unstable capsids. The intermediate with an s value of 19.4 S was the major assembly product of pR PhH69A mutant protein and could correspond to a 30mer. It is possible that the assembly or disassembly is arrested at a similar stage in pR PhN188 Delta 1, pR PhH69A and pR PhK143E mutant proteins.
Resumo:
Background: A genetic network can be represented as a directed graph in which a node corresponds to a gene and a directed edge specifies the direction of influence of one gene on another. The reconstruction of such networks from transcript profiling data remains an important yet challenging endeavor. A transcript profile specifies the abundances of many genes in a biological sample of interest. Prevailing strategies for learning the structure of a genetic network from high-dimensional transcript profiling data assume sparsity and linearity. Many methods consider relatively small directed graphs, inferring graphs with up to a few hundred nodes. This work examines large undirected graphs representations of genetic networks, graphs with many thousands of nodes where an undirected edge between two nodes does not indicate the direction of influence, and the problem of estimating the structure of such a sparse linear genetic network (SLGN) from transcript profiling data. Results: The structure learning task is cast as a sparse linear regression problem which is then posed as a LASSO (l1-constrained fitting) problem and solved finally by formulating a Linear Program (LP). A bound on the Generalization Error of this approach is given in terms of the Leave-One-Out Error. The accuracy and utility of LP-SLGNs is assessed quantitatively and qualitatively using simulated and real data. The Dialogue for Reverse Engineering Assessments and Methods (DREAM) initiative provides gold standard data sets and evaluation metrics that enable and facilitate the comparison of algorithms for deducing the structure of networks. The structures of LP-SLGNs estimated from the INSILICO1, INSILICO2 and INSILICO3 simulated DREAM2 data sets are comparable to those proposed by the first and/or second ranked teams in the DREAM2 competition. The structures of LP-SLGNs estimated from two published Saccharomyces cerevisae cell cycle transcript profiling data sets capture known regulatory associations. In each S. cerevisiae LP-SLGN, the number of nodes with a particular degree follows an approximate power law suggesting that its degree distributions is similar to that observed in real-world networks. Inspection of these LP-SLGNs suggests biological hypotheses amenable to experimental verification. Conclusion: A statistically robust and computationally efficient LP-based method for estimating the topology of a large sparse undirected graph from high-dimensional data yields representations of genetic networks that are biologically plausible and useful abstractions of the structures of real genetic networks. Analysis of the statistical and topological properties of learned LP-SLGNs may have practical value; for example, genes with high random walk betweenness, a measure of the centrality of a node in a graph, are good candidates for intervention studies and hence integrated computational – experimental investigations designed to infer more realistic and sophisticated probabilistic directed graphical model representations of genetic networks. The LP-based solutions of the sparse linear regression problem described here may provide a method for learning the structure of transcription factor networks from transcript profiling and transcription factor binding motif data.
Resumo:
Spectroscopic study on the interactions of trace elements Co, Mn, Mg and Al with d(GCGTACGC) indicated the following: Al and Mg did not alter T-m values. Mn enhanced T-m at lower concentration and decreased it at higher concentrations. Interestingly Co at higher concentration elevated the T-m. These studies also showed lower concentrations of Mn displaced EtBr, whereas Al could displace it at higher ionic strength. Mg and Co displaced EtBr fluorescence at moderate concentrations. The binding constant values and CD spectra clearly indicated strong binding of these elements to DNA.
Resumo:
The participation of a multifunctional enzy(am sein - gle polypeptide with multiple catalytic activities (14)) has been demonstrated in the conversion of agmatine to putrescine in Lathyrus sativus seedlings. This enzyme (putrescine synthase) with inherent activities of agmatine iminohydrolase, putrescine transcarbamylase, ornithine transcarbamylase, and carbamate has been purified to homogeneity anhda s M, = 55,000.
Resumo:
A stretch of 71 nucleotides in a 1.2 kilobase pair Pst I fragment of rice DNA was identified as tRNA~ gene by hybridization and nucleotide sequence analyses. The hybridization of genomic DNA with the tRNA gene showed that there are about 10 glycine tRNA genes per diploid rice genome. The 3' and 5' internal control regions, where RNA polymerase III and transcription factors bind, were found to be present in the coding sequence. The gene was transcribed into a 4S product in an yeast cell-free extract. The substitution of 5' internal control region with analogous sequences from either M13mpl9 or M13mpl8 DNA did not affect the transcription of the gene in vitro. The changes in three highly conserved nucleotides in the consensus 5' internal control region (RGYNNARYGG; R = purine, Y = pyrimidine, N = any nucleotide) did not affect transcription showing that these nucleotides are not essential for promotion of transcription. There were two 16 base pair repeats, 'TGTTTGTTTCAGCTTA' at - 130 and - 375 positions upstream from the start of the gene. Deletion of 5' flanking sequences including the 16 base pair repeat at - 375 showed increased transcription indicating that these sequences negatively modulate the expression of the gene.
Resumo:
The crystal structures of the synthetic self-complementary octamer d(G-G-T-A-T-A-C-C) and its 5-bromouracil-containing analogue have been refined to R values of 20% and 14% at resolutions of 1·8 and 2·25 Å, respectively. The molecules adopt an A-DNA type double-helical conformation, which is minimally affected by crystal forces. A detailed analysis of the structure shows a considerable influence of the nucleotide sequence on the base-pair stacking patterns. In particular, the electrostatic stacking interactions between adjacent guanine and thymine bases produce symmetric bending of the double helix and a major-groove widening. The sugar-phosphate backbone appears to be only slightly affected by the base sequence. The local variations in the base-pair orientation are brought about by correlated adjustments in the backbone torsion angles and the glycosidic orientation. Sequence-dependent conformational variations of the type observed here may contribute to the specificity of certain protein-DNA interactions.