75 resultados para Mining extraction
Resumo:
A method, system, and computer program product for fault data correlation in a diagnostic system are provided. The method includes receiving the fault data including a plurality of faults collected over a period of time, and identifying a plurality of episodes within the fault data, where each episode includes a sequence of the faults. The method further includes calculating a frequency of the episodes within the fault data, calculating a correlation confidence of the faults relative to the episodes as a function of the frequency of the episodes, and outputting a report of the faults with the correlation confidence.
Resumo:
A system for temporal data mining includes a computer readable medium having an application configured to receive at an input module a temporal data series having events with start times and end times, a set of allowed dwelling times and a threshold frequency. The system is further configured to identify, using a candidate identification and tracking module, one or more occurrences in the temporal data series of a candidate episode and increment a count for each identified occurrence. The system is also configured to produce at an output module an output for those episodes whose count of occurrences results in a frequency exceeding the threshold frequency.
Resumo:
We present an analytical field-effect method to extract the density of subgap states (subgap DOS) in amorphous semiconductor thin-film transistors (TFTs), using a closed-form relationship between surface potential and gate voltage. By accounting the interface states in the subthreshold characteristics, the subgap DOS is retrieved, leading to a reasonably accurate description of field-effect mobility and its gate voltage dependence. The method proposed here is very useful not only in extracting device performance but also in physically based compact TFT modeling for circuit simulation.
Suite of tools for statistical N-gram language modeling for pattern mining in whole genome sequences
Resumo:
Genome sequences contain a number of patterns that have biomedical significance. Repetitive sequences of various kinds are a primary component of most of the genomic sequence patterns. We extended the suffix-array based Biological Language Modeling Toolkit to compute n-gram frequencies as well as n-gram language-model based perplexity in windows over the whole genome sequence to find biologically relevant patterns. We present the suite of tools and their application for analysis on whole human genome sequence.
Resumo:
Song-selection and mood are interdependent. If we capture a song’s sentiment, we can determine the mood of the listener, which can serve as a basis for recommendation systems. Songs are generally classified according to genres, which don’t entirely reflect sentiments. Thus, we require an unsupervised scheme to mine them. Sentiments are classified into either two (positive/negative) or multiple (happy/angry/sad/...) classes, depending on the application. We are interested in analyzing the feelings invoked by a song, involving multi-class sentiments. To mine the hidden sentimental structure behind a song, in terms of “topics”, we consider its lyrics and use Latent Dirichlet Allocation (LDA). Each song is a mixture of moods. Topics mined by LDA can represent moods. Thus we get a scheme of collecting similar-mood songs. For validation, we use a dataset of songs containing 6 moods annotated by users of a particular website.
Resumo:
Analysis of high resolution satellite images has been an important research topic for urban analysis. One of the important features of urban areas in urban analysis is the automatic road network extraction. Two approaches for road extraction based on Level Set and Mean Shift methods are proposed. From an original image it is difficult and computationally expensive to extract roads due to presences of other road-like features with straight edges. The image is preprocessed to improve the tolerance by reducing the noise (the buildings, parking lots, vegetation regions and other open spaces) and roads are first extracted as elongated regions, nonlinear noise segments are removed using a median filter (based on the fact that road networks constitute large number of small linear structures). Then road extraction is performed using Level Set and Mean Shift method. Finally the accuracy for the road extracted images is evaluated based on quality measures. The 1m resolution IKONOS data has been used for the experiment.
Resumo:
We address the problem of mining targeted association rules over multidimensional market-basket data. Here, each transaction has, in addition to the set of purchased items, ancillary dimension attributes associated with it. Based on these dimensions, transactions can be visualized as distributed over cells of an n-dimensional cube. In this framework, a targeted association rule is of the form {X -> Y} R, where R is a convex region in the cube and X. Y is a traditional association rule within region R. We first describe the TOARM algorithm, based on classical techniques, for identifying targeted association rules. Then, we discuss the concepts of bottom-up aggregation and cubing, leading to the CellUnion technique. This approach is further extended, using notions of cube-count interleaving and credit-based pruning, to derive the IceCube algorithm. Our experiments demonstrate that IceCube consistently provides the best execution time performance, especially for large and complex data cubes.
Resumo:
We analyze the spectral zero-crossing rate (SZCR) properties of transient signals and show that SZCR contains accurate localization information about the transient. For a train of pulses containing transient events, the SZCR computed on a sliding window basis is useful in locating the impulse locations accurately. We present the properties of SZCR on standard stylized signal models and then show how it may be used to estimate the epochs in speech signals. We also present comparisons with some state-of-the-art techniques that are based on the group-delay function. Experiments on real speech show that the proposed SZCR technique is better than other group-delay-based epoch detectors. In the presence of noise, a comparison with the zero-frequency filtering technique (ZFF) and Dynamic programming projected Phase-Slope Algorithm (DYPSA) showed that performance of the SZCR technique is better than DYPSA and inferior to that of ZFF. For highpass-filtered speech, where ZFF performance suffers drastically, the identification rates of SZCR are better than those of DYPSA.
Resumo:
The rapid growth in the field of data mining has lead to the development of various methods for outlier detection. Though detection of outliers has been well explored in the context of numerical data, dealing with categorical data is still evolving. In this paper, we propose a two-phase algorithm for detecting outliers in categorical data based on a novel definition of outliers. In the first phase, this algorithm explores a clustering of the given data, followed by the ranking phase for determining the set of most likely outliers. The proposed algorithm is expected to perform better as it can identify different types of outliers, employing two independent ranking schemes based on the attribute value frequencies and the inherent clustering structure in the given data. Unlike some existing methods, the computational complexity of this algorithm is not affected by the number of outliers to be detected. The efficacy of this algorithm is demonstrated through experiments on various public domain categorical data sets.
Resumo:
This paper primarily intends to develop a GIS (geographical information system)-based data mining approach for optimally selecting the locations and determining installed capacities for setting up distributed biomass power generation systems in the context of decentralized energy planning for rural regions. The optimal locations within a cluster of villages are obtained by matching the installed capacity needed with the demand for power, minimizing the cost of transportation of biomass from dispersed sources to power generation system, and cost of distribution of electricity from the power generation system to demand centers or villages. The methodology was validated by using it for developing an optimal plan for implementing distributed biomass-based power systems for meeting the rural electricity needs of Tumkur district in India consisting of 2700 villages. The approach uses a k-medoid clustering algorithm to divide the total region into clusters of villages and locate biomass power generation systems at the medoids. The optimal value of k is determined iteratively by running the algorithm for the entire search space for different values of k along with demand-supply matching constraints. The optimal value of the k is chosen such that it minimizes the total cost of system installation, costs of transportation of biomass, and transmission and distribution. A smaller region, consisting of 293 villages was selected to study the sensitivity of the results to varying demand and supply parameters. The results of clustering are represented on a GIS map for the region.
Resumo:
Identifying symmetry in scalar fields is a recent area of research in scientific visualization and computer graphics communities. Symmetry detection techniques based on abstract representations of the scalar field use only limited geometric information in their analysis. Hence they may not be suited for applications that study the geometric properties of the regions in the domain. On the other hand, methods that accumulate local evidence of symmetry through a voting procedure have been successfully used for detecting geometric symmetry in shapes. We extend such a technique to scalar fields and use it to detect geometrically symmetric regions in synthetic as well as real-world datasets. Identifying symmetry in the scalar field can significantly improve visualization and interactive exploration of the data. We demonstrate different applications of the symmetry detection method to scientific visualization: query-based exploration of scalar fields, linked selection in symmetric regions for interactive visualization, and classification of geometrically symmetric regions and its application to anomaly detection.
Resumo:
Flood is one of the detrimental hydro-meteorological threats to mankind. This compels very efficient flood assessment models. In this paper, we propose remote sensing based flood assessment using Synthetic Aperture Radar (SAR) image because of its imperviousness to unfavourable weather conditions. However, they suffer from the speckle noise. Hence, the processing of SAR image is applied in two stages: speckle removal filters and image segmentation methods for flood mapping. The speckle noise has been reduced with the help of Lee, Frost and Gamma MAP filters. A performance comparison of these speckle removal filters is presented. From the results obtained, we deduce that the Gamma MAP is reliable. The selected Gamma MAP filtered image is segmented using Gray Level Co-occurrence Matrix (GLCM) and Mean Shift Segmentation (MSS). The GLCM is a texture analysis method that separates the image pixels into water and non-water groups based on their spectral feature whereas MSS is a gradient ascent method, here segmentation is carried out using spectral and spatial information. As test case, Kosi river flood is considered in our study. From the segmentation result of both these methods are comprehensively analysed and concluded that the MSS is efficient for flood mapping.
Resumo:
Mycobacterium tuberculosis owes its high pathogenic potential to its ability to evade host immune responses and thrive inside the macrophage. The outcome of infection is largely determined by the cellular response comprising a multitude of molecular events. The complexity and inter-relatedness in the processes makes it essential to adopt systems approaches to study them. In this work, we construct a comprehensive network of infection-related processes in a human macrophage comprising 1888 proteins and 14,016 interactions. We then compute response networks based on available gene expression profiles corresponding to states of health, disease and drug treatment. We use a novel formulation for mining response networks that has led to identifying highest activities in the cell. Highest activity paths provide mechanistic insights into pathogenesis and response to treatment. The approach used here serves as a generic framework for mining dynamic changes in genome-scale protein interaction networks.
Resumo:
This paper presents classification, representation and extraction of deformation features in sheet-metal parts. The thickness is constant for these shape features and hence these are also referred to as constant thickness features. The deformation feature is represented as a set of faces with a characteristic arrangement among the faces. Deformation of the base-sheet or forming of material creates Bends and Walls with respect to a base-sheet or a reference plane. These are referred to as Basic Deformation Features (BDFs). Compound deformation features having two or more BDFs are defined as characteristic combinations of Bends and Walls and represented as a graph called Basic Deformation Features Graph (BDFG). The graph, therefore, represents a compound deformation feature uniquely. The characteristic arrangement of the faces and type of bends belonging to the feature decide the type and nature of the deformation feature. Algorithms have been developed to extract and identify deformation features from a CAD model of sheet-metal parts. The proposed algorithm does not require folding and unfolding of the part as intermediate steps to recognize deformation features. Representations of typical features are illustrated and results of extracting these deformation features from typical sheet metal parts are presented and discussed. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
Epoch is defined as the instant of significant excitation within a pitch period of voiced speech. Epoch extraction continues to attract the interest of researchers because of its significance in speech analysis. Existing high performance epoch extraction algorithms require either dynamic programming techniques or a priori information of the average pitch period. An algorithm without such requirements is proposed based on integrated linear prediction residual (ILPR) which resembles the voice source signal. Half wave rectified and negated ILPR (or Hilbert transform of ILPR) is used as the pre-processed signal. A new non-linear temporal measure named the plosion index (PI) has been proposed for detecting `transients' in speech signal. An extension of PI, called the dynamic plosion index (DPI) is applied on pre-processed signal to estimate the epochs. The proposed DPI algorithm is validated using six large databases which provide simultaneous EGG recordings. Creaky and singing voice samples are also analyzed. The algorithm has been tested for its robustness in the presence of additive white and babble noise and on simulated telephone quality speech. The performance of the DPI algorithm is found to be comparable or better than five state-of-the-art techniques for the experiments considered.