91 resultados para Microwave hydrothermal synthesis
Resumo:
Microwave-based methods are widely employed to synthesize metal nanoparticles on various substrates. However, the detailed mechanism of formation of such hybrids has not been addressed. In this paper, we describe the thermodynamic and kinetic aspects of reduction of metal salts by ethylene glycol under microwave heating conditions. On the basis of this analysis, we identify the temperatures above which the reduction of the metal salt is thermodynamically favorable and temperatures above which the rates of homogeneous nucleation of the metal and the heterogeneous nucleation of the metal on supports are favored. We delineate different conditions which favor the heterogeneous nucleation of the metal on the supports over homogeneous nucleation in the solvent medium based on the dielectric loss parameters of the solvent and the support and the metal/solvent and metal/support interfacial energies. Contrary to current understanding, we show that metal particles can be selectively formed on the substrate even under situations where the temperature of the substrate Is lower than that of the surrounding medium. The catalytic activity of the Pt/CeO(2) and Pt/TiO(2) hybrids synthesized by this method for H(2) combustion reaction shows that complete conversion is achieved at temperatures as low as 100 degrees C with Pt-CeO(2) catalyst and at 50 degrees C with Pt-TiO(2) catalyst. Our method thus opens up possibilities for rational synthesis of high-activity supported catalysts using a fast microwave-based reduction method.
Resumo:
We have demonstrated a simple, scalable and inexpensive method based on microwave plasma for synthesizing 5 to 10 g/h of nanomaterials. Luminescent nano silicon particles were synthesized by homogenous nucleation of silicon vapour produced by the radial injection of silicon tetrachloride vapour and nano titanium nitride was synthesized by using liquid titanium tetrachloride as the precursor. The synthesized nano silicon and titanium nitride powders were characterized by XRD, XPS, TEM, SEM and BET. The characterization techniques indicated that the synthesized powders were indeed crystalline nanomaterials.
Resumo:
A simple, rapid, and surfactant-free synthesis of crystalline copper nanostructures has been carried out through microwave irradiation of a solution of copper acetylacetonate in benzyl alcohol. The structures are found to be stable against oxidation in ambient air for several months. High-resolution electron microscopy (SEM and TEM) reveals that the copper samples comprise nanospheres measuring about 150 nm in diameter, each made of copper nanocrystals similar to 7 nm in extension. The nanocrystals are densely packed into spherical aggregates, the driving force being minimization of surface area and surface energy, and are thus immune to oxidation in ambient air. Such aggregates can also be adherently supported on SiO2 and Al2O3 when these substrates are immersed in the irradiated solution. The air-stable copper nanostructures exhibit surface enhanced Raman scattering, as evidenced by the detection of 4-mercaptobenzoic acid at 10(-6) M concentrations.
Resumo:
Single-layer graphene (SLG), the 3.4 angstrom thick two-dimensional sheet of sp(2) carbon atoms, was first prepared in 2004 by mechanical exfoliation of graphite crystals using the scotch tape technique. Since then, SLG has been prepared by other physical methods such as laser irradiation or ultrasonication of graphite in liquid media. Chemical methods of synthesis of SLG are more commonly used; the most popular involves preparation of single-layer graphene oxide followed by reduction with a stable reagent, often assisted by microwave heating. This method yields single-layer reduced graphene oxide. Other methods for preparing SLG include chemical vapour deposition over surfaces of transition metals such as Ni and Cu. Large-area SLG has also been prepared by epitaxial growth over SIC. Few-layer graphene (FLG) is prepared by several methods; arc discharge of graphite in hydrogen atmosphere being the most convenient. Several other methods for preparing FLG include exfoliation of graphite oxide by rapid heating, ultrasonication or laser irradiation of graphite in liquid media, reduction of few-layer graphene oxide, alkali metal intercalation followed by exfoliation. Graphene nanoribbons, which are rectangular strips of graphene, are best prepared by the unzipping of carbon nanotubes by chemical oxidation or laser irradiation. Many graphene analogues of inorganic materials such as MoS2, MoSe2 and BN have been prepared by mechanical exfoliation, ultrasonication and by chemical methods involving high-temperature or hydrothermal reactions and intercalation of alkali metals followed by exfoliation. Scrolls of graphene are prepared by potassium intercalation in graphite or by microwave irradiation of graphite immersed in liquid nitrogen.
Resumo:
Heavily nitrogenated graphene oxide containing similar to 18 wt% nitrogen, prepared by microwave synthesis with urea as the nitrogen source, shows outstanding performance as a supercapacitor electrode material, with the specific capacitance going up to 461 F g(-1).
Resumo:
Rapid and facile synthesis of similar to 7 nm and similar to 100-400 nm nano-structures of anatase titania is achieved by exploiting the chemical nature of solvents through a microwave based approach. After using these nanostructures as a photoanode in dye-sensitized solar cells, a modest yet appreciable efficiency of 6.5% was achieved under the illumination of AM 1.5 G one sun (100 mW cm(-2)).
Resumo:
A controllable synthesis of phase pure wurtzite (WZ) ZnS nanostructures has been reported in this work at a low temperature of similar to 220 degrees C using ethylenediamine as the soft template and by varying the molar concentration of zinc to sulphur precursors as well as by using different precursors. A significant reduction in the formation temperature required for the synthesis of phase pure WZ ZnS has been observed. A strong correlation has been observed between the morphology of the synthesized ZnS nanostructures and the precursors used during synthesis. It has been found from Scanning Electron Microscope (SEM) and Transmission Electron Microscope (TEM) image analyses that the morphology of the ZnS nanocrystals changes from a block-like to a belt-like structure having an average length of similar to 450 nm when the molar ratio of zinc to sulphur source is increased from 1 : 1 to 1 : 3. An oriented attachment (OA) growth mechanism has been used to explain the observed shape evolution of the synthesized nanostructures. The synthesized nanostructures have been characterized by the X-ray diffraction technique as well as by UV-Vis absorption and photoluminescence (PL) emission spectroscopy. The as-synthesized nanobelts exhibit defect related visible PL emission. On isochronal annealing of the nanobelts in air in the temperature range of 100-600 degrees C, it has been found that white light emission with a Commission Internationale de I'Eclairage 1931 (CIE) chromaticity coordinate of (0.30, 0.34), close to that of white light (0.33, 0.33), can be obtained from the ZnO nanostructures obtained at an annealing temperature of 600 degrees C. UV light driven degradation of methylene blue (MB) dye aqueous solution has also been demonstrated using as-synthesized nanobelts and similar to 98% dye degradation has been observed within only 40 min of light irradiation. The synthesized nanobelts with visible light emission and having dye degradation activity can be used effectively in future optoelectronic devices and in water purification for cleaning of dyes.
Resumo:
An overview of the synthesis of materials under microwave irradiation has been presented based on the work performed recently. A variety of reactions such as direct combination, carbothermal reduction, carbidation and nitridation have been described. Examples of microwave preparation of glasses are also presented. Great advantages of fast, clean and reduced reaction temperature of microwave methods are emphasized. The example of ZrO2-CeO2 ceramics has been used show the extraordinarily fast and effective sintering which occurs in microwave irradiation.
Resumo:
Eight new open-framework inorganic-organic hybrid compounds based on indium have been synthesized employing hydrothermal methods. All of the compounds have InO6, C2O4, and HPO3/HPO4/SO4 units connected to form structures of different dimensionality Thus, the compounds have zero- (I), two- (II, III, IV, V, VII, and VIII), and three-dimensionally (VI) extended networks. The formation of the first zero-dimensional hybrid compound is noteworthy In addition, concomitant polymorphic structures have been observed in the present study. The molecular compound, I, was found to be reactive, and the transformation studies in the presence of a base (pyridine) give rise to the polymorphic structures of II and III, while the addition of an acid (H3PO3) gives rise to a new indium phosphite with a pillared layer structure (T1). Preliminary density functional theory calculations suggest that the stabilities of the polymorphs are different, with one of the forms (II) being preferred over the other, which is consistent with the observed experimental behavior. The oxalate units perform more than one role in the present structures. Thus, the oxalate units connect two In centers to satisfy the coordination requirements as well as to achieve charge balance in compounds II, IV, and VI. The terminal oxalate units observed in compounds I, IV, and V suggest the possibility of intermediate structures. Both in-plane and out-of-plane connectivity of the oxalate units were observed in compound VI. The 31 compounds have been characterized by powder X-ray diffraction, IR spectroscopy, thermogravimetric analysis, and P-31 NMR studies.
Resumo:
Hydrothermal reactions between uranium salts and arsenic pentoxide in the presence of two different amines yielded six new uranium arsenate phases exhibiting open-framework structures, ethylenediamine (en): [C2N2H9]-[(UO2)(ASO(4))] I; [C2N2H10][(UO2)F(HASO(4))]2 center dot 4H(2)O, II; [C2N2H9][U2F5(HASO(4))(2)], III; [C2N2H9][UF2(ASO(4))], IV; diethylenetriamine (DETA), [C4N3H16][U2F3(ASO(4))(2)(HAsO4)] V; and [C4N3H16][U2F6(AsO4)(HAsO4)], VI. The structures were determined using single crystal studies, which revealed two- (I, II, V) and three-dimensional (III, IV, VI) structures for the uranium arsenates. The uranium atom, in these compounds, exhibits considerable variations in the coordination (6 to 9) that appears to have some correlation with the synthetic conditions. The water molecules in [C2N2H10][(UO2)F(HAsO4)](2 center dot)4H(2)O, II, could be reversibly removed, and the dehydrated phase, [C2N2H10][(UO2)F(HAsO4)](2), IIa, was also characterized using single crystal studies. The observation of many mineralogical structures in the present compounds suggests that the hydrothermal method could successfully replicate the geothermal conditions. As part of this study, we have observed autunite, Ca[(UO2)(PO4)](2)(H2O)(11), metavauxite, [Fe(H2O)(6)][Al(OH)(H2O)(PO4)](2), finarite, PbCU(SO4)(OH)(2), and tancoite, LiNa2H[Al(PO4)(2)(OH)], structures. The repeated observation of the secondary building unit, SBU-4, in many of the uranium arsenate structures suggests that these are viable building units. Optical studies on the uranium arsenate compound, [C4N3H16][U2F6(AsO4)(HASO(4))), VI, containing uranium in the +4 oxidation state indicates a blue emission through an upconversion process. The compound also exhibits antiferromagnetic behavior.
Resumo:
Copper(II) hydrazine carboxylate monohydrate, Cu(N2H3COO)2·H2O and chromium (II, III) hydrazine carboxylate hydrates, Cu(N2H3COO)2·H2O and Cu(N2H3COO)2·3H2O have been prepared and characterised by chemical analysis, IR, visible spectra and magnetic measurements. Thermal analysis of the copper complex yields a mixture of copper metal and copper oxide. Chromium complexes on thermal decomposition yield Cr2O3 as residue. Decomposition of chromium(HI) complex under hydrothermal conditions yield CrOOH, a precursor to CrO2.
Resumo:
The reaction of pyrimidine-2-carbonitrile, NaN3 in the presence of Co(NO3)(2)center dot 6H(2)O or MnCl2 center dot 4H(2)O leads to the formation of complexes Co(pmtz)(mu(1,3)-N-3)(H2O)](n) (1) and Mn(pmtz)(mu(1,3)-N-3)(H2O)](n) (2) respectively, under hydrothermal condition pmtz =5-(pyrimidyl)tetrazolate]. These two complexes have been fully characterized by single crystal X-ray diffraction. Complex 1 crystallizes in a non-centrosymmetric space group Aba2 in the orthorhombic system and is found to exhibit ferroelectric behavior, whereas complex 2 crystallizes in the P2(1)/c space group in the monoclinic system. Variable temperature magnetic characterizations in the temperature range of 2-300 K indicate that complex 1 is a canted antiferromagnet (weak ferromagnet) with T-c = 15.9 K. Complex 1 represents a unique example of a multiferroic coordination polymer containing tetrazole as a co-ligand. Complex 2 is a one-dimensional chain of Mn(II) bridged by a well-known antiferromagnetic coupler end-to-end azido ligand. In contrast to the role played by the end-to-end azido pathway in most of the transition metal complexes, complex 2 showed unusual ferromagnetic behavior below 40 K because of spin canting.
Resumo:
A hydrothermal reaction of a mixture of ZnCl2, V2O5, ethylenediamine and water gave rise to a layered poly oxovanadate material. clusters. These clusters, with all the vanadium ions in the +4 state, are connected together through Zn(NH2(CH2)(2)NH2)(2) linkers forming a two-dimensional structure. The layers are also separated by distorted trigonal bipyramidal [Zn-2(NH2(CH2)(2)NH2)(5)] complexes. The Structure, thus, presents a dual role for the Zn-ethylenediamine complex. The magnetic susceptibility studies indicate that the interactions between the V centres in I are predominantly antiferromagnetic in nature and the compound shows highly frustrated behaviour. The magnetic properties are compared to the theoretical calculations based oil the Heisenberg model, in addition to correlating to the structure. Crystal data for the complexes are presented.
Resumo:
A hydrothermal reaction of the acetate salts of the rare-earths, 5-aminoisophthalic acid (H(2)AIP), and NaOH at 150 degrees C for 3 days gave rise to a new family of three-dimensional rare-earth aminoisophthalates, M(mu(2)-OH)(C8H5NO4)] M = Y3+ (I), La3+ (II), Pr3+ (III), Nd3+ (IV), Sm3+ (V), Eu3+ (VI), Gd3+ (VII), Dy3+ (VIII), and Er3+ (IX)]. The structures contain M-O(H)-M chains connected by AIP anions. The AIP ions are connected to five metal centers and each metal center is connected with five AIP anions giving rise to a unique (5,5) net. To the best of our knowledge, this is the first observation of a (5,5) net in metal-organic frameworks that involve rare-earth elements. The doping of Eu3+/(3+) ions in place of Y3+/ La3+ in the parent structures gave rise to characteristic metal-centered emission (red = Eu3+, green = Tb3+). Life-time studies indicated that the excited emission states in the case of Eu3+ (4 mol-% doped) are in the range 0.287-0.490 ms and for Tb3+ (4 mol-% doped) are in the range of 1.265-1.702 ms. The Nd3+-containing compound exhibits up-conversion behavior based on two-photon absorption when excited using lambda = 580 nm.
Resumo:
Research on structure and magnetic properties of polynuclear metal complexes to understand the structural and chemical factors governing the electronic exchange coupling mediated by multi-atom bridging ligands is of growing interest. Hydrothermal treatment of Ni(NO3)(2)center dot 6H(2)O with N-(4-carboxyphenyl)iminodiacetic acid N-4(H(3)CPIDA)] at 150 degrees C yielded a 3D coordination polymer of general formula Ni-3{N-4( CPIDA)}(2)(H2O)(3)]center dot 6H(2)O (1). An analogous network of general formula Co-3{N-3(CPIDA)}(2)(H2O)(3)]center dot 3H(2)O (2) was synthesized using N-(3-carboxyphenyl) iminodiacetic acid N-3(H(3)CPIDA)] in combination with Co(NO3)(2)center dot 6H(2)O under identical reaction condition. Both the complexes contain trinuclear secondary building unit, and crystallized in monoclinic system with space groups C2/c (1) and P2(1)/c (2), respectively. Variable temperature magnetic characterization of these complexes in the temperature range of 2-300 K indicated the presence of overall ferromagnetic and antiferromagnetic behavior for 1 and 2, respectively. Density functional theory calculations (B3LYP functional) were performed for further insight on the trinuclear units to provide a qualitative theoretical interpretation on the overall magnetic behavior of the complexes 1 and 2. (C) 2010 Elsevier B.V. All rights reserved.