50 resultados para Mechel, C. v., 1737-1818.


Relevância:

100.00% 100.00%

Publicador:

Resumo:

High-k TiO2 thin film on p-type silicon substrate was fabricated by a combined sol-gel and spin coating method. Thus deposited titania film had anatase phase with a small grain size of 16 nm and surface roughness of congruent to 0.6 nm. The oxide capacitance (C-ox), flat band capacitance (C-FB), flat band voltage (V-FB), oxide trapped charge (Q(ot)), calculated from the high frequency (1 MHz) C-V curve were 0.47 nF, 0.16 nF, -0.91 V, 4.7x10(-12) C, respectively. As compared to the previous reports, a high dielectric constant of 94 at 1 MHz frequency was observed in the devices investigated here and an equivalent oxide thickness (EOT) was 4.1 nm. Dispersion in accumulation capacitance shows a linear relationship with AC frequencies. Leakage current density was found in acceptable limits (2.1e-5 A/cm(2) for -1 V and 5.7e-7 A/cm(2) for +1 V) for CMOS applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the recent past, many studies have been carried out on the determination of coefficient of consolidation (c(v)) from the time (t)-deformation (d) data obtained from conventional consolidation tests. Several researchers have also proposed different curve fitting procedures for determining cv from the t-d data. It is anticipated that the cv values obtained from the t-d data may be influenced by initial and secondary compressions. Nevertheless, the pore water pressure data measured during the consolidation process will be independent of initial and secondary compressions. In this study, the conventional Asaoka (1978) method is extended to evaluate cv and end-of-primary (EOP) consolidation from the pore water pressure data measured from laboratory experiments. Laboratory experiments were carried out on the modified one-dimensional consolidation apparatus on different remoulded clay samples measuring pore water pressure during the consolidation process. The cv and EOP computed from the proposed approach have been compared with the results of the t-d data and found to be in good agreement.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, polymer diode performance was analyzed by using nickel as anode electrode from two kinds of nickel as starting materials, namely nickel wire Ni{B} and nickel nano-particle Ni{N}. Metal electrode surface roughness and grain morphology were investigated by atomic force microscope and scanning electron microscope, respectively. Current-voltage (I-V) and capacitance-voltage (C-V) characteristics were measured for the fabricated device at room temperature. Obtained result from the current-voltage characteristics shows an increment in the current density for nickel nano-particle top electrode device. The increase in the current density could be due to a reduction in built-in voltage at P3HT/Ni{N} interface.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The high-kappa gate dielectrics, specifically amorphous films offer salient features such as exceptional mechanical flexibility, smooth surfaces and better uniformity associated with low leakage current density. In this work, similar to 35 nm thick amorphous ZrO2 films were deposited on silicon substrate at low temperature (300 degrees C, 1 h) from facile spin-coating method and characterized by various analytical techniques. The X-ray diffraction and X-ray photoelectron spectroscopy reveal the formation of amorphous phase ZrO2, while ellipsometry analysis together with the Atomic Force Microscope suggest the formation of dense film with surface roughness of 1.5 angstrom, respectively. The fabricated films were integrated in metal-oxide-semiconductor (MOS) structures to check the electrical capabilities. The oxide capacitance (C-ox), flat band capacitance (C-FB), flat band voltage (V-FB), dielectric constant (kappa) and oxide trapped charges (Q(ot)) extracted from high frequency (1 MHz) C-V curve are 186 pF, 104 pF, 0.37V, 15 and 2 x 10(-11) C, respectively. The small flat band voltage 0.37V, narrow hysteresis and very little frequency dispersion between 10 kHz-1 MHz suggest an excellent a-ZrO2/Si interface with very less trapped charges in the oxide. The films exhibit a low leakage current density 4.7 x 10(-9)A/cm(2) at 1V. In addition, the charge transport mechanism across the MOSC is analyzed and found to have a strong bias dependence. The space charge limited conduction mechanism is dominant in the high electric field region (1.3-5 V) due to the presence of traps, while the trap-supported tunneling is prevailed in the intermediate region (0.35-1.3 V). Low temperature solution processed ZrO2 thin films obtained are of high quality and find their importance as a potential dielectric layer on Si and polymer based flexible electronics. (C) 2016 Published by Elsevier B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report the tunable dielectric constant of titania films with low leakage current density. Titanium dioxide (TiO2) films of three different thicknesses (36, 63 and 91 nm) were deposited by the consecutive steps of solution preparation, spin-coating, drying, and firing at different temperatures. The problem of poor adhesion between Si substrate and TiO2 insulating layer was resolved by using the plasma activation process. The surface roughness was found to increase with increasing thickness and annealing temperature. The electrical investigation was carried out using metal-oxide-semiconductor structure. The flat band voltage (V-FB), oxide trapped charge (Q(ot)), dielectric constant (kappa) and equivalent oxide thicknesses are calculated from capacitance-voltage (C-V) curves. The C-V characteristics indicate a thickness dependent dielectric constant. The dielectric constant increases from 31 to 78 as thickness increases from 36 to 91 nm. In addition to that the dielectric constant was found to be annealing temperature and frequency dependent. The films having thickness 91 nm and annealed at 600 A degrees C shows the low leakage current density. Our study provides a broad insight of the processing parameters towards the use of titania as high-kappa insulating layer, which might be useful in Si and polymer based flexible devices.