51 resultados para Mamary ultrasound
Resumo:
Acidic region streaking (ARS) is one of the lacunae in two-dimensional gel electrophoresis (2DE) of bacterial proteome. This streaking is primarily caused by nucleic acid (NuA) contamination and poses major problem in the downstream processes like image analysis and protein identification. Although cleanup and nuclease digestion are practiced as remedial options, these strategies may incur loss in protein recovery and perform incomplete removal of NuA. As a result, ARS has remained a common observation across publications, including the recent ones. In this work, we demonstrate how ultrasound wave can be used to shear NuA in plain ice-cooled water, facilitating the elimination of ARS in the 2DE gels without the need for any additional sample cleanup tasks. In combination with a suitable buffer recipe, IEF program and frequent paper-wick changing approach, we are able to reproducibly demonstrate the production of clean 2DE gels with improved protein recovery and negligible or no ARS. We illustrate our procedure using whole cell protein extracts from two diverse organisms, Escherichia coli and Mycobacterium smegmatis. Our designed protocols are straightforward and expected to provide good 2DE gels without ARS, with comparable times and significantly lower cost.
Resumo:
In the present work, we report a novel, in vivo, noninvasive technique to determine radial arterial compliance using the radial arterial pressure pulse waveform (RAPPW) acquired by fiber Bragg grating pulse recorder (FBGPR). The radial arterial compliance of the subject can be measured during sphygmomanometric examination by the unique signatures of arterial diametrical variations and the beat-to-beat pulse pressure acquired simultaneously from the RAPPW recorded using FBGPR. This proposed technique has been validated against the radial arterial diametrical measurements obtained from the color Doppler ultrasound. Two distinct trials have been illustrated in this work and the results from both techniques have been found to be in good agreement with each other.
Resumo:
Imaging the vasculature close around the finger joints is of interest in the field of rheumatology. Locally increased vasculature in the synovial membrane of these joints can be a marker for rheumatoid arthritis. In previous work we showed that part of the photoacoustically induced ultrasound from the epidermis reflects on the bone surface within the finger. These reflected signals could be wrongly interpreted as new photoacoustic sources. In this work we show that a conventional ultrasound reconstruction algorithm, that considers the skin as a collection of ultrasound transmitters and the PA tomography probe as the detector array, can be used to delineate bone surfaces of a finger. This can in the future assist in the localization of the joint gaps. This can provide us with a landmark to localize the region of the inflamed synovial membrane. We test the approach on finger mimicking phantoms.
Resumo:
Inflammatory arthritis is often manifested in finger joints. The growth of new or withdrawal of old blood vessels can be a sensitive marker for these diseases. Photoacoustic (PA) imaging has great potential in this respect since it allows the sensitive and highly resolved visualization of blood. We systematically investigated PA imaging of finger vasculature in healthy volunteers using a newly developed PA tomographic system. We present the PA results which show excellent detail of the vasculature. Vessels with diameters ranging between 100 mu m and 1.5 mm are visible along with details of the skin, including the epidermis and the subpapillary plexus. The focus of all the studies is at the proximal and distal interphalangeal joints, and in the context of ultimately visualizing the inflamed synovial membrane in patients. This work is important in laying the foundation for detailed research into PA imaging of the phalangeal vasculature in patients suffering from rheumatoid arthritis.
Resumo:
The present study reports a noninvasive technique for the measurement of the pulse transit time differential (PTTD) from the pulse pressure waveforms obtained at the carotid artery and radial artery using fiber Bragg grating pulse recorders (FBGPR). PTTD is defined as the time difference between the arrivals of a pulse pressure waveform at the carotid and radial arterial sites. The PTTD is investigated as an indicator of variation in the systolic blood pressure. The results are validated against blood pressure variation obtained from a Mindray Patient Monitor. Furthermore, the pulse wave velocity computed from the obtained PTTD is compared with the pulse wave velocity obtained from the color Doppler ultrasound system and is found to be in good agreement. The major advantage of the PTTD measurement via FBGPRs is that the data acquisition system employed can simultaneously acquire pulse pressure waveforms from both FBGPRs placed at carotid and radial arterial sites with a single time scale, which eliminates time synchronization complexity. (C) 2015 Society of Photo-Optical Instrumentation Engineers (SPIE)
Resumo:
Photoacoustic (PA) imaging of interphalangeal peripheral joints is of interest in the context of using the synovial membrane as a surrogate marker of rheumatoid arthritis. Previous work has shown that ultrasound (US) produced by absorption of light at the epidermis reflects on the bone surfaces within the finger. When the reflected signals are backprojected in the region of interest, artifacts are produced, confounding interpretation of the images. In this work, we present an approach where the PA signals known to originate from the epidermis are treated as virtual US transmitters, and a separate reconstruction is performed as in US reflection imaging. This allows us to identify the bone surfaces. Furthermore, the identification of the joint space is important as this provides a landmark to localize a region-of-interest in seeking the inflamed synovial membrane. The ability to delineate bone surfaces allows us to identify not only the artifacts but also the interphalangeal joint space without recourse to new US hardware or a new measurement. We test the approach on phantoms and on a healthy human finger.