162 resultados para Long-range Correlation
Resumo:
The degree of B/B alternate cation order is known to heavily influence the magnetic properties of A2BB O6 double perovskites although the nature of such disorder has never been critically studied. Our detailed x-ray absorption fine structure studies in conjunction with synchrotron radiation x-ray diffraction experiments on polycrystalline Sr2FeMoO6 samples with various degrees of disorder reveal that a very high degree of short range order is preserved even in samples with highly reduced long range chemical order. Based on these experimental results and with the help of detailed structural simulations, we are able to model the nature of the disorder in this important class of materials and discuss the consequent implications on its physical properties.
Resumo:
Low frequency fluctuations in the electrical resistivity, or noise, have been used as a sensitive tool to probe into the temperature driven martensite transition in dc magnetron sputtered thin films of nickel titanium shape-memory alloys. Even in the equilibrium or static case, the noise magnitude was more than nine orders of magnitude larger than conventional metallic thin films and had a characteristic dependence on temperature. We observe that the noise while the temperature is being ramped is far larger as compared to the equilibrium noise indicating the sensitivity of electrical resistivity to the nucleation and propagation of domains during the shape recovery. Further, the higher order statistics suggests the existence of long range correlations during the transition. This new characterization is based on the kinetics of disorder in the system and separate from existing techniques and can be integrated to many device applications of shape memory alloys for in-situ shape recovery sensing.
Resumo:
The magnetic and transport properties of LaCo0.5Ni0.5O3 have been studied. The dc magnetization and the ac susceptibility studies suggest the presence of a magnetic-phase transition from a ferromagnetic (FM) to a spin glass phase at a low temperature. This type of reentrant spin-glass (RSG) behavior attached to a long-range ordered ferromagnet is observed in this system. A magnetoresistance of ~10% is observed at 5 K which is unsaturated up to 11 Tesla suggests the presence of antiferromagnetic (AFM) interactions. It is likely that the competition between such AFM interactions with FM interactions yield an RSG phase.
Resumo:
The scalar coupled proton NMR spectra of many organic molecules possessing more than one phenyl ring are generally complex due to degeneracy of transitions arising from the closely resonating protons, in addition to several short- and long- range couplings experienced by each proton. Analogous situations are generally encountered in derivatives of halogenated benzanilides. Extraction of information from such spectra is challenging and demands the differentiation of spectrum pertaining to each phenyl ring and the simplification of their spectral complexity. The present study employs the blend of independent spin system filtering and the spin-state selective detection of single quantum (SO) transitions by the two-dimensional multiple quantum (MQ) methodology in achieving this goal. The precise values of the scalar couplings of very small magnitudes have been derived by double quantum resolved experiments. The experiments also provide the relative signs of heteronuclear couplings. Studies on four isomers of dilhalogenated benzanilides are reported in this work.
Resumo:
From consideration of 'H-lH vicinal coupling constants and '"G'H long-range coupling constants in a series of amino acid derivatives, the precise values of uC component vicinal coupling constants have been calculated for the three minimum energy staggered rotamers for the C(or)H-C(P)H, side-chains of amino acids.
Resumo:
In this paper, we report the synthesis and self assembly of various sizes of ZnO nanocrystals. While the crystal structure and the quantum confinement of nanocrystals were mainly characterized using XRD and UV absorption spectra, the self assembly and long range ordering were studied using scanning tunneling microscopy after spin casting the nanocrystal film on the highly oriented pyrolytic graphite surface. We observe self assembly of these nanocrystals over large areas making them ideal candidates for various potential applications. Further, the electronic structure of the individual dots is obtained from the current-voltage characteristics of the dots using scanning tunneling spectroscopy and compared with the density of states obtained from the tight binding calculations. We observe an excellent agreement with the experimentally obtained local density of states and the theoretically calculated density of states.
Resumo:
Single-phase LaNi1-xMnxO3 samples in the compositional range 0
Resumo:
The Stockmayer-Fixman relation was used to evaluate the short range and long range interaction parameters for methyl methacrylate/acrylonitrile copolymers of 0,566 and 0,657 mole fraction of monomeric units of acrylonitrile in the solvents acetonitrile, 2-butanone, dimethyl formamide, and y-butyrolactone, at different temperatures (30, 45, and 60 “C). The values of KO were found to be lower than those of the parent homopolymers, and their values depend on both solvent and temperature. Even negative Ko-values were obtained, in cases in which the Mark Houwink exponent a is nearly unity. The values of the polymer-solvent interaction parameter, x, , are high and close to 0,5, indicating that these solvents are not good. The values of the excess interaction parameter, xAB, are negative and are not affected by temperature. The large extension of these copolymer chains, as exhibited by a and a;-values, can be understood in terms of unusual short range interactions only. Similar results were obtained for some cellulose derivatives.
Resumo:
We have investigated the time-dependent fluctuations in electrical resistance, or noise, in high quality crystalline magnetic nanowires within nanoporous templates. The noise increases exponentially with increasing temperature and magnetic field, and has been analyzed in terms of domain wall depinning within the Neel-Brown framework. The frequency-dependence of noise also indicates a crossover from nondiffusive kinetics to long-range diffusion at higher temperatures, as well as a strong collective depinning, which need to be considered when implementing these nanowires in magnetoelectronic devices.
Resumo:
Both short-range and long-range intermolecular interaction energies between two aromatic hydrocarbon molecules, both in their ground state, separated by a range of interplanar distances of 3 ∼ 4 Aring, are estimated using the standard perturbation theory. The results show that aromatic hydrocarbons can form weak sandwich dimers with larger separation between them than is normally believed in their excimers. The non-sandwich form of dimer in which the long in-plane axes of the monomers are parallel and their short in-plane axes inclined, represents an unstable orientation because this form can pass to the perfect sandwich form without an energy barrier.
Resumo:
We incorporate various gold nanoparticles (AuNPs) capped with different ligands in two-dimensional films and three-dimensional aggregates derived from N-stearoyl-L-alanine and N-lauroyl-L-alanine, respectively. The assemblies of N-stearoyl-L-alanine afforded stable films at the air-water interface. More compact assemblies were formed upon incorporation of AuNPs in the air-water interface of N-stearoyl-L-alanine. We then examined the effects of incorporation of various AuNPs functionalized with different capping ligands in three-dimensional assemblies of N-lauroyl-L-alanine, a compound that formed a gel in hydrocarbons. The profound influence of nanoparticle incorporation into physical gels was evident from evaluation of various microscopic and bulk properties. The interaction of AuNPs with the gelator assembly was found to depend critically on the capping ligands protecting the Au surface of the gold nanoparticles. Transmission electron microscopy (TEM) showed a long-range directional assembly of certain AuNPs along the gel fibers. Scanning electron microscopy (SEM) images of the freeze-dried gels and nanocomposites indicate that the morphological transformation in the composite microstructures depends significantly on the capping agent of the nanoparticles. Differential scanning calorimetry (DSC) showed that gel formation from sol occurred at a lower temperature upon incorporation of AuNPs having capping ligands that were able to align and noncovalently interact with the gel fibers. Rheological studies indicate that the gel-nanoparticle composites exhibit significantly greater viscoelasticity compared to the native gel alone when the capping ligands are able to interact through interdigitation into the gelator assembly. Thus, it was possible to define a clear relationship between the materials and the molecular-level properties by means of manipulation of the information inscribed on the NP surface.
Resumo:
A Monte Carlo simulation of Ising chains with competing short-range and infiniterange interactions has been carried out. Results show that whenever the system does not enter a metastable state, variation of temperature brings about phase transitions in the Ising chain. These phase transitions, except for two sets of interaction strengths, are generally of higher order and involve changes in the long-range order while the short-range order remains unaffected.
Resumo:
The electronic structure of sodium tungsten bronzes NaxWO3 is investigated by high-resolution angle-resolved photoemission spectroscopy (ARPES). The ARPES spectra measured in both insulating and metallic phases of NaxWO3 reveals the origin of metal-insulator transition (MIT) in sodium tungsten bronze system. It is found that in insulating NaxWO3 the states near the Fermi level (E-F) are localized due to the strong disorder caused by the random distribution of Na+ ions in WO3 lattice. Due to the presence of disorder and long-range Coulomb interaction of conduction electrons, a soft Coulomb gap arises, where the density of states vanishes exactly at E-F. In the metallic regime the states near E-F are populated and the Fermi level shifts upward rigidly with increasing electron doping (x). Volume of electron-like Fermi surface (FS) at the Gamma(X) point of the Brillouin zone gradually increases with increasing Na concentration due to W 5d t(2g) band filling. A rigid shift of the Fermi energy is found to give a qualitatively good description of the Fermi surface evolution. As we move from bulk-sensitive to more surface sensitive photon energy, we found the emergence of Fermi surfaces at X(M) and M(R) point similar to the one at the Gamma(X) point in the metallic regime, suggesting that the reconstruction of surface was due to rotation/deformation of WO6 octahedra.
Resumo:
The density-matrix renormalization group (DMRG) method is used for a comparative study of low-lying excitations in trans-polyacetylene (t-PA) and transversely substituted t-PA (TS-t-PA). We have employed the Pariser-Parr-Pople model Hamiltonian which incorporates long-range electronic correlations to model these systems. We find some fundamental differences in the excited states of the t-PA and TS-t-PA. We find that the lowest two-photon allowed excited state in TS-t-PA is not made up of two triplet excitons and the gap to this state is nonzero even for undimerized chains in the thermodynamic limit. Contrary to earlier results for the Hubbard model, we find that the lowest two-photon state is always below the first optically allowed state in all the systems studied here making TS-t-PA systems only weakly fluorescent materials. Nonresonant tumbling averaged linear and third harmonic generation optic coefficients of TS-t-PA systems are also much smaller than that of t-PA.
Resumo:
P-Nickel hydroxide comprises a long range periodic arrangement of atoms with a stacking sequence of AC AC AC-having an ideal composition Ni(OH)(2). Variation in the preparative conditions can lead to the changes in the stacking sequence (AC AC BA CB AC AC or AC AC AB AC AC) This type of variation in stacking sequence can result in the formation of stacking fault in nickel hydroxide. The stability of the stacking fault depends on the free energy content of the sample. Stacking faults in nickel hydroxide is essential for better electrochemical activity. Also there are reports correlating particle size to the better electrochemical activity. Here we present the effect of crystallite size on the stacking faulted nickel hydroxide samples. The electrochemical performance of stacking faulted nickel hydroxide with small crystallite size exchanges 0.8e/Ni, while the samples with larger crystallite size exchange 0.4e/Ni. Hence a right combination of crystallite size and stacking fault content has to be controlled for good electrochemical activity of nickel hydroxide. (C) 2008 Elsevier B.V. All rights reserved.