79 resultados para Load analyser


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, power management algorithms for energy harvesting sensors (EHS) that operate purely based on energy harvested from the environment are proposed. To maintain energy neutrality, EHS nodes schedule their utilization of the harvested power so as to save/draw energy into/from an inefficient battery during peak/low energy harvesting periods, respectively. Under this constraint, one of the key system design goals is to transmit as much data as possible given the energy harvesting profile. For implementational simplicity, it is assumed that the EHS transmits at a constant data rate with power control, when the channel is sufficiently good. By converting the data rate maximization problem into a convex optimization problem, the optimal load scheduling (power management) algorithm that maximizes the average data rate subject to energy neutrality is derived. Also, the energy storage requirements on the battery for implementing the proposed algorithm are calculated. Further, robust schemes that account for the insufficiency of battery storage capacity, or errors in the prediction of the harvested power are proposed. The superior performance of the proposed algorithms over conventional scheduling schemes are demonstrated through computations using numerical data from solar energy harvesting databases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Relay selection combined with buffering of packets of relays can substantially increase the throughput of a cooperative network that uses rateless codes. However, buffering also increases the end-to-end delays due to the additional queuing delays at the relay nodes. In this paper we propose a novel method that exploits a unique property of rateless codes that enables a receiver to decode a packet from non-contiguous and unordered portions of the received signal. In it, each relay, depending on its queue length, ignores its received coded bits with a given probability. We show that this substantially reduces the end-to-end delays while retaining almost all of the throughput gain achieved by buffering. In effect, the method increases the odds that the packet is first decoded by a relay with a smaller queue. Thus, the queuing load is balanced across the relays and traded off with transmission times. We derive explicit necessary and sufficient conditions for the stability of this system when the various channels undergo fading. Despite encountering analytically intractable G/GI/1 queues in our system, we also gain insights about the method by analyzing a similar system with a simpler model for the relay-to-destination transmission times.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we consider the problem of scheduling expression trees on delayed-load architectures. The problem tackled here takes root from the one considered in [Proceedings of the ACM SIGPLAN '91 Conf. on Programming Language Design and Implementation, 1991. p. 256] in which the leaves of the expression trees all refer to memory locations. A generalization of this involves the situation in which the trees may contain register variables, with the registers being used only at the leaves. Solutions to this generalization are given in [ACM Trans. Prog. Lang. Syst. 17 (1995) 740, Microproc. Microprog. 40 (1994) 577]. This paper considers the most general case in which the registers are reusable. This problem is tackled in [Comput. Lang, 21 (1995) 49] which gives an approximate solution to the problem under certain assumptions about the contiguity of the evaluation order: Here we propose an optimal solution (which may involve even a non-contiguous evaluation of the tree). The schedule generated by the algorithm given in this paper is optimal in the sense that it is an interlock-free schedule which uses the minimum number of registers required. An extension to the algorithm incorporates spilling. The problem as stated in this paper is an instruction scheduling problem. However, the problem could also be rephrased as an operations research problem with a difference in terminology. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, a finite-element model is developed in which the nonlinear soil behavior is represented by a hyperbolic relation for static load condition and modified hyperbolic relation, which includes both degradation and gap for a cyclic load condition. Although batter piles are subjected to lateral load, the soil resistance is also governed by axial load, which is incorporated by considering the P-Δ moment and geometric stiffness matrix. By adopting the developed numerical model, static and cyclic load analyses are performed adopting an incremental-iterative procedure where the pile is idealized as beam elements and the soil as elastoplastic spring elements. The proposed numerical model is validated with published laboratory and field pile test results under both static and cyclic load conditions. This paper highlights the importance of the degradation factor and its influence on the soil resistance-displacement (p-y) curve, number of cycles of loading, and cyclic load response.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conventional thyristor-based load commutated inverter (LCI)-fed wound field synchronous machine operates only above a minimum speed that is necessary to develop enough back emf to ensure commutation. The drive is started and brought up to a speed of around 10-15% by a complex `dc link current pulsing' technique. During this process, the drive have problems such as pulsating torque, insufficient average starting torque, longer starting time, etc. In this regard a simple starting and low-speed operation scheme, by employing an auxiliary low-power voltage source inverter (VSI) between the LCI and the machine terminals, is presented in this study. The drive is started and brought up to a low speed of around 15% using the VSI alone with field oriented control. The complete control is then smoothly and dynamically transferred to the conventional LCI control. After the control transfer, the VSI is turned off and physically disconnected from the main circuit. The advantages of this scheme are smooth starting, complete control of torque and flux at starting and low speeds, less starting time, stable operation, etc. The voltage rating of the required VSI is very low of the order of 10-15%, whereas the current rating is dependent on the starting torque requirement of the load. The experimental results from a 15.8 hp LCI-fed wound field synchronous machine are given to demonstrate the scheme.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Existing soil nailing design methodologies are essentially based on limit equilibrium principles that together with a lumped factor of safety or a set of partial factors on the material parameters and loads account for uncertainties in design input parameter values. Recent trends in the development of design procedures for earth retaining structures are towards load and resistance factor design (LRFD). In the present study, a methodology for the use of LRFD in the context of soil-nail walls is proposed and a procedure to determine reliability-based load and resistance factors is illustrated for important strength limit states with reference to a 10 m high soil-nail wall. The need for separate partial factors for each limit state is highlighted, and the proposed factors are compared with those existing in the literature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider a problem of providing mean delay and average throughput guarantees in random access fading wireless channels using CSMA/CA algorithm. This problem becomes much more challenging when the scheduling is distributed as is the case in a typical local area wireless network. We model the CSMA network using a novel queueing network based approach. The optimal throughput per device and throughput optimal policy in an M device network is obtained. We provide a simple contention control algorithm that adapts the attempt probability based on the network load and obtain bounds for the packet transmission delay. The information we make use of is the number of devices in the network and the queue length (delayed) at each device. The proposed algorithms stay within the requirements of the IEEE 802.11 standard.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes the measurement of aerodynamic loads using fiber-optic strain gauge sensors and associated signal processors at hypersonic speeds in the 300mm hypersonic wind tunnel. at the Department of Aerospace Engineering, Indian Institute of Science. Fiber-optic sensors have been developed in USA since 1990, for variety of applications in experimental stress analysis, skin friction measurement in fluid flows, smart structures, smart materials, sensing of acoustic emission and more recently in the development of compact devices for measurement of displacement, stress/strain, pressure, temperature, acceleration etc. Our group at llSc has been playing a lead role in the use of these fiber - optic sensors for successful measurement of aerodynamic loads in wind tunnels and the first ever six-component wind tunnel strain gauge balance in the world based on fiber optic sensors was built at the Indian Institute of Science in the year 1999. We report here the results of our efforts in the development of an internal strain gauge balance for high-speed wind tunnel applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High voltage power supplies for radar applications are investigated, which are subjected to pulsed load (125 kHz and 10% duty cycle) with stringent specifications (<0.01% regulation, efficiency>85%, droop<0.5 V/micro-sec.). As good regulation and stable operation requires the converter to be switched at much higher frequency than the pulse load frequency, transformer poses serious problems of insulation failure and higher losses. This paper proposes a methodology to tackle the problems associated with this type of application. Synchronization of converter switching with load pulses enables the converter to switch at half the load switching frequency. Low switching frequency helps in ensuring safety of HV transformer insulation and reduction of losses due to skin and proximity effect. Phase-modulated series resonant converter with ZVS is used as the power converter.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High voltage power supplies for radar applications are investigated which are subjected to pulsed load with stringent specifications. In the proposed solution, power conversion is done in two stages. A low power-high frequency converter modulates the input voltage of a high power-low frequency converter. This method satisfies all the performance specifications and takes care of the critical aspects of HV transformer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper obtains a new accurate model for sensitivity in power systems and uses it in conjunction with linear programming for the solution of load-shedding problems with a minimum loss of loads. For cases where the error in the sensitivity model increases, other linear programming and quadratic programming models have been developed, assuming currents at load buses as variables and not load powers. A weighted error criterion has been used to take priority schedule into account; it can be either a linear or a quadratic function of the errors, and depending upon the function appropriate programming techniques are to be employed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For the analysis and design of pile foundation used for coastal structures the prediction of cyclic response, which is influenced by the nonlinear behavior, gap (pile soil separation) and degradation (reduction in strength) of soil becomes necessary. To study the effect of the above parameters a nonlinear cyclic load analysis program using finite element method is developed, incorporating the proposed gap and degradation model and adopting an incremental-iterative procedure. The pile is idealized using beam elements and the soil by number of elastoplastic sub-element springs at each node. The effect of gap and degradation on the load-deflection behavior. elasto-plastic sub-element and resistance of the soil at ground-line have been clearly depicted in this paper.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nonlinear analysis of batter piles in soft clay is performed using the finite element technique. As the batter piles are not only governed by lateral load but also axial load, the effect of P- Delta moment and geometric stiffness matrix is included in the analysis. For implementing the nonlinear soil behavior, reduction in soil strength (degradation), and formation of gap with number of load cycles, a numerical model is developed where a hyperbolic relation is adopted for the soil in static condition and hyperbolic relation considering degradation and gap for cyclic load condition. The numerical model is validated with published experimental results for cyclic lateral loading and the hysteresis loops are developed to predict the load-deflection behavior and soil resistance behavior during consecutive cycles of loading. This paper highlights the importance of a rigorous degradation model for subsequent cycles of loading on the pile-soil system by a hysteretic representation.