162 resultados para Li_8SiN_4-Li_3N-BN
Resumo:
The interannual variation of surface fields over the Arabian Sea and Bay of Bengal are studied using data between 1900 and 1979. It is emphasized that the monthly mean sea surface temperature (SST) over the north Indian Ocean and monsoon rainfall are significantly affected by synoptic systems and other intraseasonal variations. To highlight the interannual signals it is important to remove the large-amplitude high-frequency noise and very low frequency long-term trends, if any. By suitable spatial and temporal averaging of the SST and the rainfall data and by removing the long-term trend from the SST data, we have been able to show that there exists a homogeneous region in the southeastern Arabian Sea over which the March�April (MA) SST anomalies are significantly correlated with the seasonal (June�September) rainfall over India. A potential of this premonsoon signal for predicting the seasonal rainfall over India is indicated. It is shown that the correlation between the SST and the seasonal monsoon rainfall goes through a change of sign from significantly positive with premonsoon SST to very small values with SST during the monsoon season and to significantly negative with SST during the post-monsoon months. For the first time, we have demonstrated that heavy or deficient rainfall years are associated with large-scale coherent changes in the SST (although perhaps of small amplitude) over the north Indian 0cean. We also indicate possible reasons for the apparent lack of persistence of the premonsoon SST anomalies.
Resumo:
Adenylosuccinate synthetase catalyzes a reversible reaction utilizing IMP, GTP and aspartate in the presence of Mg2+ to form adenylosuccinate, GDP and inorganic phosphate. Comparison of similarly liganded complexes of Plasmodium falciparum, mouse and Escherichia coil AdSS reveals H-bonding interactions involving nonconserved catalytic loop residues (Asn429, Lys62 and Thr307) that are unique to the parasite enzyme. Site-directed mutagenesis has been used to examine the role of these interactions in catalysis and structural organization of P. falciparum adenylosuccinate synthetase (PfAdSS). Mutation of Asn429 to Val, Lys62 to Leu and Thr307 to Val resulted in an increase in K-m values for IMP, GTP and aspartate, respectively along with a 5 fold drop in the k(cat) value for N429V mutant suggesting the role of these residues in ligand binding and/or catalysis. We have earlier shown that the glycolytic intermediate, fructose 1,6 bisphosphate, which is an inhibitor of mammalian AdSS is an activator of the parasite enzyme. Enzyme kinetics along with molecular docking suggests a mechanism for activation wherein F16BP seems to be binding to the Asp loop and inducing a conformation that facilitates aspartate binding to the enzyme active site. Like in other AdSS, a conserved arginine residue (Arg155) is involved in dimer crosstalk and interacts with IMP in the active site of the symmetry related subunit of PfAdSS. We also report on the iochemical characterization of the arginine mutants (R155L, R155K and R155A) which suggests that unlike in E. coil AdSS, Arg155 in PfAdSS influences both ligand binding and catalysis. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The characteristics of the separated flow behind a diaphragm over a burning surface are investigated experimentally. This complex problem of practical significance involving recirculation, blowing and combustion reactions is studied in a two-dimensional combustion tunnel. The flame structure, recirculation patterns and heat transfer to the surface are presented for a range of values of free stream and fuel injection velocities as well as for different heights of the diaphragm. The trends of heat transfer vs axial distance are shown to be similar to those resulting from a non-reactive heated stream with a diaphragm. Treating the case of a boundary layer diffusion flame as that corresponding to the zero height of the diaphragm, the heat transfer augmentation due to recirculation is estimated. It is found that at considerable downstream distances (xfh > 3), the heat transfer rates with diaphragm overtake the rates from a developing boundary layer case. Flow visualization studies with particle track photography show that there are many similarities between the reactive and the non-reactive cases.
Resumo:
Highly stable silver nanoparticles (Ag NPs) in agar-agar (Ag/agar) as inorganic-organic hybrid were obtained as free-standing film by in situ reduction of silver nitrate by ethanol. The antimicrobial activity of Ag/agar film on Escherichia coli (E. coil), Staphylococcus aureus (S. aureus), and Candida albicans (C albicans) was evaluated in a nutrient broth and also in saline solution. In particular, films were repeatedly tested for antimicrobial activity after recycling. UV-vis absorption and TEM studies were carried out on films at different stages and morphological studies on microbes were carried out by SEM. Results showed spherical Ag NPs of size 15-25 nm, having sharp surface plasmon resonance (SPR) band. The antimicrobial activity of Ag/agar film was found to be in the order, C. albicans > E. coil > S. aureus, and antimicrobial activity against C. albicans was almost maintained even after the third cycle. Whereas, in case of E. coil and S. aureus there was a sharp decline in antimicrobial activity after the second cycle. Agglomeration of Ag NPs in Ag/agar film on exposure to microbes was observed by TEM studies. Cytotoxic experiments carried out on HeLa cells showed a threshold Ag NPs concentration of 60 mu g/mL, much higher than the minimum inhibition concentration of Ag NPs (25.8 mu g/mL) for E. coli. The mechanical strength of the film determined by nanoindentation technique showed almost retention of the strength even after repeated cycle. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The role of convergence feedback on the stability of a coupled ocean‐atmosphere system is studied using model III of Hirst (1986). It is shown that the unstable coupled mode found by Hirst is greatly modified by the convergence feedback. If the convergence feedback strength exceeds a critical value, several new unstable intraseasonal modes are also introduced. These modes have very weak dependence on the wave number. These results may explain the behaviour of some coupled models and to some extent provide a mechanism for the observed aperiodicity of the El‐Nino and Southern Oscillation (ENSO) events.
Resumo:
The effect of magnesium addition and subsequent heat treatment on mild wear of a cast hypoeutectic aluminium-silicon alloy when slid against EN 24 steel is studied. Morphology and chemistry of worn surface and subsurface are studied with a view to identify wear mechanism. Stability of an iron-aluminium mixed surface layer was found to be the key factor controlling wear resistance.
Resumo:
Four isomeric dialdehydes 4, readily available from cycloaddition of propiolic aldehyde (2) to 1,2,4,5-hexatetraene (1), were separated by chromatography and recrystallization, and were characterized by their spectroscopic data. The individual isomers can now be easily identified from their H-1 NMR spectra even if only one of them is present.
Resumo:
For resonant column tests conducted in the flexure mode of excitation, a new methodology has been proposed to find the elastic modulus and associated axial strain of a cylindrical sample. The proposed method is an improvement over the existing one, and it does not require the assumption of either the mode shape or zero bending moment condition at the top of the sample. A stepwise procedure is given to perform the necessary calculations. From a number of resonant column experiments on aluminum bars and dry sand samples, it has been observed that the present method as compared with the one available in literature provides approximately (i) 5.9%-7.3% higher values of the elastic modulus and (ii) 6.5%-7.3% higher values of the associated axial strains.
Resumo:
Conformational analysis of cyclic pentapeptides having two intra-ring 3 leads to 1 hydrogen bonds has been carried out. It is found that the structure can easily be formed with trans planar peptide units without causing significant angular strain at the alpha-carbon atoms. Four different types of conformations designated Types I--IV are possible for the backbone structure. Details of these four types of conformations and also the accommodating possibility of these types for allglycyl and all-alanyl residues are presented. Three of the four types have relatively low energies for glycyl residues whereas the other one has a slightly higher energy. When alanyl residues are introduced at the five alpha-carbon atoms, the types that are energetically favourable depend upon the sequence of isomers. Energy calculations have also been carried out for the combinations of glycyl, L- and D-alanyl residues. The theoretical results are compared with available experimental observations both from solution and solid state studies.
Resumo:
Aluminium alloy (A356)-SiC composites containing 15 and 25 wt.% silicon carbide particles (average size 43 μm) were tested for sliding wear at different loads using a pin on disc machine. Composites exhibited better wear resistance compared with unreinforced alloy up to a pressure of 26 MPa. Scanning electron microscopy examination of worn surfaces and subsurfaces show that the presence of dispersed SiC particles help in reducing the propensity of material flow at the surface, at the same time leading to the formation of an iron-rich layer on the surface.
Resumo:
The finite predictability of the coupled ocean-atmosphere system is determined by its aperiodic variability. To gain insight regarding the predictability of such a system, a series of diagnostic studies has been carried out to investigate the role of convergence feedback in producing the aperiodic behavior of the standard version of the Cane-Zebiak model. In this model, an increase in sea surface temperature (SST) increases atmospheric heating by enhancing local evaporation (SST anomaly feedback) and low-level convergence (convergence feedback). The convergence feedback is a nonlinear function of the background mean convergence field. For the set of standard parameters used in the model, it is shown that the convergence feedback contributes importantly to the aperiodic behaviour of the model. As the strength of the convergence feedback is increased from zero to its standard value, the model variability goes from a periodic regime to an aperiodic regime through a broadening of the frequency spectrum around the basic periodicity of about 4 years. Examination of the forcing associated with the convergence feedback reveals that it is intermittent, with relatively large amplitude only during 2 or 3 months in the early part of the calendar year. This seasonality in the efficiency of the convergence feedback is related to the strong seasonality of the mean convergence over the eastern Pacific. It is shown that if the mean convergence field is fixed at its March value, aperiodic behavior is produced even in the absence of annual cycles in the other mean fields. On the, other hand, if the mean convergence field is fixed at its September value, the coupled model evolution remains close to periodic, even in the presence of the annual cycle in the other fields. The role of convergence feedback on the aperiodic variability of the model for other parameter regimes is also examined. It is shown that a range exists in the strength of the SST anomaly feedback for which the model variability is aperiodic even without the convergence feedback. It appears that in the absence of convergence feedback, enhancement of the strength of the air-sea coupling in the model through other physical processes also results in aperiodicity in the model.
Resumo:
A hard roller under normal load is driven by the flat surface of a soft disc. Corrugations are generated on the disc when certain surface morphological, load, speed and mechanical property-oriented conditions are met. The evolutionary process of corrugation generation and the preconditions necessary for it are investigated morphologically and mechanically for four disc materials: mild steel, brass, PTFE and PMMA.
Resumo:
A conceptual model is proposed to explain the observed aperiodicity in the short term climate fluctuations of the tropical coupled ocean-atmosphere system. This is based on the evidence presented here that the tropical coupled ocean-atmosphere system sustains a low frequency inter-annual mode and a host of higher frequency intra-seasonal unstable modes. At long wavelengths, the low frequency mode is dominant while at short wavelengths, the high frequency modes are dominant resulting in the co-existence of a long wave low frequency mode with some short wave intra-seasonal modes in the tropical coupled system. It is argued that due to its long wavelength, the low frequency mode would behave like a linear oscillator while the higher frequency short wave modes would be nonlinear. The conceptual model envisages that an interaction between the low frequency linear oscillator and the high frequency nonlinear oscillations results in the observed aperiodicity of the tropical coupled system. This is illustrated by representing the higher frequency intra-seasonal oscillations by a nonlinear low order model which is then coupled to a linear oscillator with a periodicity of four years. The physical mechanism resulting in the aperiodicity in the low frequency oscillations and implications of these results on the predictability of the coupled system are discussed.
Resumo:
Cutting of Y2O3-doped TZP rods by a low-speed diamond saw introduces an unidentified, metastable phase X (x-ZrO2) coexisting with the tetragonal (t-ZrO2) and the monoclinic (m-ZrO2) phases initially present in the sample. Further mechanical deformation of the cut surface by indentation or polishing sustains the x-ZrO2. Chemical etching removes the x-ZrO2 and increases the m-ZrO2content.