93 resultados para Leaves.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Processing of Sesbania mosaic virus (SeMV) polyprotein 2a and 2ab was reanalyzed in the view of the new genome organization of sobemoviruses. Polyprotein 2a when expressed in E coli, from the new cDNA clone, got cleaved at the earlier identified sites E325-T326, E402-T403 and E498-S499 to release protease, VPg, P10 and P8, respectively. Additionally, a novel cleavage was identified within the protease domain at position E132-S133, which was found to be essential for efficient polyprotein processing. Products, corresponding to cleavages identified in E. coli, were also detected in infected Sesbania leaves. Interestingly, though the sites are exactly the same in polyprotein 2ab, it got cleaved between Protease-VPg but not between VPg-RdRp. This indicates to a differential cleavage preference, governed probably by the conformation of 2ab. Also, the studies revealed that, in SeMV, processing is regulated by mode of cleavage and context of the cleavage site.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Suspension cultures of Catharanthus roseus were used to evaluate ultraviolet-B (UV-B) treatment as an abiotic elicitor of secondary metabolites. A dispersed cell suspension culture from C. roseus leaves in late exponential phase and stationary phase were irradiated with UV-B for 5 min. The stationary phase cultures were more responsive to UV-B irradiation than late exponential phase cultures. Catharanthine and vindoline increased 3-fold and 12-fold, respectively, on treatment with a 5-min UV-B irradiation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hyoscyamine 60-hydroxylase (H6H: EC 1.14.11.11), a key enzyme at the terminal step of tropane alkaloid biosynthesis, converts hyoscyamine to scopolamine. The accumulation of scopolamine in different organs, in particular the aerial parts for storage, is subject to the expression of hyoscyamine 6-phydroxylase as well as its transport from the site of synthesis. To understand the molecular basis of this regulation, we have analyzed, in parallel, the relative levels of hyoscyamine and scopolamine, and the accumulation of H6H (both protein and transcript) in leaves, stems and roots of D. metel. The root, stem and leaf tissues all contain about 0.51-0.65 mg g(-1) dry weight of scopolamine. Hyoscyamine content was extremely low in leaf and stem tissues and was about 0.28 mg g(-1) dry weight in the root tissue. H6H protein and its transcript were found only in roots but not in the aerial parts viz. stems and leaves. The immunolocalization studies performed on leaf, stem, root as well as hairy root tissues showed that H6H was present only in the pericycle cells of young lateral and hairy roots. These studies suggest that the conversion of hyoscyamine to scopolamine takes place in the root pericycle cells, and the alkaloid biosynthesized in the roots gets translocated to the aerial parts in D. metel. (C) 2009 Elsevier Ireland Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Microstructure and microtexture evolution during static annealing of a hot-extruded AZ21 magnesium alloy was studied. Apart from fine recrystallized equiaxed grains and large elongated deformed grains, a new third kind of abnormal grains that are stacked one after the other in a row parallel to the extrusion direction were observed. The crystallographic misorientation inside these grains was similar to that of the fine recrystallized grains. The large elongated grains exhibited significant in-grain misorientation. A self-consistent mechanistic model was developed to describe the formation of these grain morphologies during dynamic recrystallization (DRX). The texture of pre-extruded material, although lost in DRX, leaves a unique signature which manifests itself in the form of these grain morphologies. The origin of abnormal stacked grains was associated with slow nucleation in pre-extruded grains of a certain orientation. Further annealing resulted in large secondary recrystallized grains with occasional extension twins. (c) 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fermentable components of municipal solid wastes (MSW) such as fruit and vegetable wastes (FVW), leaf litter, paddy straw, cane bagasse, cane trash and paper are generated in large quantities at various pockets of the city. These form potential feedstocks for decentralized biogas plants to be operated in the vicinity. We characterized the fermentation potential of six of the above MSW fractions for their suitability to be converted to biogas and anaerobic compost using the solid-state stratified bed (SSB) process in a laboratory study. FVW and leaf litter (papermulberry leaves) decomposed almost completely while paddy straw, sugarcane trash, sugarcane bagasse and photocopying paper decomposed to a lower extent. In the SSB process between 50-60% of the biological methane potential (BMP) could be realized. Observations revealed that the SSB process needs to be adapted differently for each of the feedstocks to obtain a higher gas recovery. Bagasse produced the largest fraction of anaerobic compost (fermentation residue) and has the potential for reuse in many ways.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The mulberry leaves were shown to harbour substantial populations of bacteria, streptomycetes, yeasts, and moulds. Azotobacter and Beijerinckia were observed to contribute to nearly 5 to 10 per cent of the bacterial population. When grown in water culture under sterile conditions, Azotobacter inoculation on the leaf or root surface was found to increase plant growth, dry wt, and nitrogen content of the mulberry. The beneficial effect of Azotobacter was largely influenced by the presence of a carbon source in the plant nutrient solution. The root inoculation in comparison to leaf application was found to confer greater benefits to the growing plant. The presence of carbohydrates and amino acids in the leaf leachates of mulberry was shown. The mutual beneficial nature of the association of the plant and Azotobacter has been brought to light.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Isophenoxazine, formed by the condensation of two molecules of o-aminophenol, is reduced by an enzyme system from Tecoma stans leaves to two molecules of catechol. The reaction proceeds well under anaerobic conditions; a 1–2 mole stoichiometry between the substrate disappeared and the product formed was maintained. The enzyme showed maximum activity at pH 5. The substrate at high concentrations caused a diminution in the activity and the optimum concentration of substrate was at 6 × 10−4 Image . The enzyme preparation was able to convert cinnabarinic acid and diphenylene dioxide 2,3-quinone into the corresponding catechol substances. The diphenylene dioxide 2,3-quinone at the same concentration was three times more susceptible to enzymic cleavage than isophenoxazine. Cinnabarinic acid inhibited the enzymic cleavage of isophenoxazine competitively. None of the known electron donors was found to activate the reaction. Inhibition studies suggested that intact sulfhydryl groups are necessary for enzyme activity. Heavy metal ions like Hg++, Ag+, Co++, Fe++, Ni++, and Fe3++ inhibited the reaction. Metal chelating agents did not have any effect on the enzyme.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Although several authors have implicated 3-hydroxyanthranilic acid (3-OHA) as an intermediate in tryptophaniacin pathway in animals (Kaplan, 1961), alternative pathways of metabolism of this compound have not been fully explored. Madhusudanan Nair obtained an enzyme from spinach leaves which could convert 3-OHA to cinnabarinic acid (private communication). Viollier and Süllmann (1950) reported the conversion of 3-OHA to an unidentified red compound by rat liver homogenates. The present investigation describes the identification of this product as cinnabarinic acid (2-amino-3-H-isophenoxazine-3-one-1,9-dicarboxylic acid). Cinnabarinic acid is known to occur in nature along with cinnabarin is olated from the fungus Polystictus sanguineus (Gripenberg et al., 1957; Gripenberg, 1958).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An enzyme which catalyses the oxidation of o-aminophenol to o-quinoneimine and the subsequent condensation of o-aminophenol and o-quinoneime to give isophenoxazine has been isolated from the leaves of Tecoma stans. The reaction had an optimum pH of 6.2 and an optimum temperature of 45°. Heavy-metal ions like Hg2+, Co2+, Mg2+, Fe3+, were inhibitory. Mn2+ activated the reaction to about 40%. The reaction requires intact sulfhydryl groups. A study of the coenzyme requirements showed that isophenoxazine synthase (o-aminophenol: O2 oxidoreductase) is a flavoprotein requiring FAD for maximum activity. Stoichiometric studies showed that 2 moles of o-aminophenol gave 1 mole of isophhenoxazine.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

COENZYME Q (CoQ), which is widely distributed in animal, plant and microbial sources, has been implicated in electron transport1 and generally assumed to be associated with mitochondria. However, it has also been found in non-mitochondrial fractions of green leaves, although it appears to be concentrated in mitochondria2. A similar distribution has now been demonstrated in rat liver cell fractions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Discrimination of Bell states plays an important role in a number of quantum computational protocols such as teleportation and secret sharing. However, most of the protocols dealing with Bell state discrimination in the literature either involve performing correlated measurements or destroying the entanglement of the system. Here, we demonstrate an NMR-based experimental realization of a protocol for Bell state discrimination, following a scheme proposed by Gupta et al (quant-ph/0504183v1, 23 April 2005), which does not destroy the Bell state under consideration. Using the proposed protocol, one can deterministically distinguish the Bell states, without performing a measurement using the entangled basis. State discrimination is performed through two independent measurements on one ancilla qubit, which leaves the Bell states unchanged.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sym-homospermidine, [formula; see text] is a naturally occurring rare-polyamine found in relatively large concentration in sandal leaves. As part of our studies on structure and interactions of polyamines, ym-homospermidine was purified from sandal leaves and its structure was determined by single crystal X-ray diffraction technique. The phosphate salt of the molecule crystallized in the triclinic space group P1- with a = 8.246(1)A, b = 8.775(1)A, c = 15.531(2)A, alpha = 74.20(1) degrees, beta = 88.36(1) degrees and gamma = 65.41(1) degrees. The structure was determined by direct methods and refined to a final R factor of 5.4% for 2087 reflections with magnitude of F(obs) greater than 5 sigma [F(obs)]. The amine exists in its most favourable all trans conformation. For each amine molecule three phosphate groups exist in the crystal structure, suggesting that two of the oxygens of each phosphate group are protonated. There is also a single water molecule in the asymmetric unit in contrast to that of spermidine phosphate which has 3 water molecules. These differences probably reflect the hydrogen bonding properties of mono-ionic and di-ionic phosphate groups. The structure is predominantly stabilized by a network of hydrogen bonds.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The boxicity of a graph G, denoted as boxi(G), is defined as the minimum integer t such that G is an intersection graph of axis-parallel t-dimensional boxes. A graph G is a k-leaf power if there exists a tree T such that the leaves of the tree correspond to the vertices of G and two vertices in G are adjacent if and only if their corresponding leaves in T are at a distance of at most k. Leaf powers are used in the construction of phylogenetic trees in evolutionary biology and have been studied in many recent papers. We show that for a k-leaf power G, boxi(G) a parts per thousand currency sign k-1. We also show the tightness of this bound by constructing a k-leaf power with boxicity equal to k-1. This result implies that there exist strongly chordal graphs with arbitrarily high boxicity which is somewhat counterintuitive.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Patterns of leaf-flushing phenology of trees in relation to insect herbivore damage were studied at two sites in a seasonal tropical dry forest in Mudumalai, southern India, from April 1988 to August 1990. At both sites the trees began to flush leaves during the dry season, reaching a peak leaf-flushing phase before the onset of rains. Herbivorous insects emerged with the rains and attained a peak biomass during the wet months. Trees that flushed leaves later in the season suffered significantly higher damage by insects compared to those that flushed early or in synchrony during the peak flushing phase. Species whose leaves were endowed with physical defenses such as waxes suffered less damage than those not possessing such defenses. There was a positive association between the abundance of a species and leaf damage levels. These observations indicate that herbivory may have played a major role in moulding leaf flushing phenology in trees of the seasonal tropics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dephosphocoenzyme A kinase performs the transfer of the c-phosphate of ATP to dephosphocoenzyme A, catalyzing the last step of coenzyme A biosynthesis. This enzyme belongs to the P-loop-containing NTP hydrolase superfamily, all members of which posses a three domain topology consisting of a CoA domain that binds the acceptor substrate, the nucleotide binding domain and the lid domain. Differences in the enzymatic organization and regulation between the human and mycobacterial counterparts, have pointed out the tubercular CoaE as a high confidence drug target (HAMAP database). Unfortunately the absence of a three-dimensional crystal structure of the enzyme, either alone or complexed with either of its substrates/regulators, leaves both the reaction mechanism unidentified and the chief players involved in substrate binding, stabilization and catalysis unknown. Based on homology modeling and sequence analysis, we chose residues in the three functional domains of the enzyme to assess their contributions to ligand binding and catalysis using site-directed mutagenesis. Systematically mutating the residues from the P-loop and the nucleotide-binding site identified Lys14 and Arg140 in ATP binding and the stabilization of the phosphoryl intermediate during the phosphotransfer reaction. Mutagenesis of Asp32 and Arg140 showed catalytic efficiencies less than 5-10% of the wild type, indicating the pivotal roles played by these residues in catalysis. Non-conservative substitution of the Leu114 residue identifies this leucine as the critical residue from the hydrophobic cleft involved in leading substrate, DCoA binding. We show that the mycobacterial enzyme requires the Mg2+ for its catalytic activity. The binding energetics of the interactions of the mutant enzymes with the substrates were characterized in terms of their enthalpic and entropic contributions by ITC, providing a complete picture of the effects of the mutations on activity. The properties of mutants defective in substrate recognition were consistent with the ordered sequential mechanism of substrate addition for CoaE.