317 resultados para Lattice theory.
Resumo:
We report the results of two studies of aspects of the consistency of truncated nonlinear integral equation based theories of freezing: (i) We show that the self-consistent solutions to these nonlinear equations are unfortunately sensitive to the level of truncation. For the hard sphere system, if the Wertheim–Thiele representation of the pair direct correlation function is used, the inclusion of part but not all of the triplet direct correlation function contribution, as has been common, worsens the predictions considerably. We also show that the convergence of the solutions found, with respect to number of reciprocal lattice vectors kept in the Fourier expansion of the crystal singlet density, is slow. These conclusions imply great sensitivity to the quality of the pair direct correlation function employed in the theory. (ii) We show the direct correlation function based and the pair correlation function based theories of freezing can be cast into a form which requires solution of isomorphous nonlinear integral equations. However, in the pair correlation function theory the usual neglect of the influence of inhomogeneity of the density distribution on the pair correlation function is shown to be inconsistent to the lowest order in the change of density on freezing, and to lead to erroneous predictions. The Journal of Chemical Physics is copyrighted by The American Institute of Physics.
Resumo:
It is maintained that the one-parameter scaling theory is inconsistent with the physics of Anderson localisation.
Resumo:
A direct and simple approach, utilizing Watson's lemma, is presented for obtaining an approximate solution of a three-part Wiener-Hopf problem associated with the problem of diffraction of a plane wave by a soft strip.
Resumo:
A lattice-gas model of multilayer adsorption has been solved in the mean-field approximation by a different numerical method. Earlier workers obtained a single solution for all values of temperature and pressure. In the present work, multiple solutions have been obtained in certain regions of temperature and pressure which give rise to bysteresis in the adsorption isotherm. In addition, we have obtained a parameter which behaves like an order parameter for the transition. The potential-energy function shows a double minimum in the region of bysteresis and a single maximum elsewhere.
Resumo:
Functional dependencies in relational databases are investigated. Eight binary relations, viz., (1) dependency relation, (2) equipotence relation, (3) dissidence relation, (4) completion relation, and dual relations of each of them are described. Any one of these eight relations can be used to represent the functional dependencies in a database. Results from linear graph theory are found helpful in obtaining these representations. The dependency relation directly gives the functional dependencies. The equipotence relation specifies the dependencies in terms of attribute sets which functionally determine each other. The dissidence relation specifies the dependencies in terms of saturated sets in a very indirect way. Completion relation represents the functional dependencies as a function, the range of which turns out to be a lattice. Depletion relation which is the dual of the completion relation can also represent functional dependencies and similarly can the duals of dependency, equipotence, and dissidence relations. The class of depleted sets, which is the dual of saturated sets, is defined and used in the study of depletion relations.
Resumo:
In certain molecular models, and related one-dimensional field theories, localized objects appear with half-integral expectation values of charge. We consider whether these states are eigenstates of charge, with half-integral eigenvalue. We find that it is indeed so for a suitably diffuse definition of the charge operator in question. This diffuse charge operator has a spectrum which approaches a continuum. The analysis is made on a lattice, to avoid divergence ambiguities, and on a finite length, which is only subsequently made large. The half-integral charge phenomenon is not tied to solitons, but can also arise as an end effect.
Resumo:
Any (N+M)-parameter Lie group G with an N-parameter subgroup H can be realized as a global group of diffeomorphisms on an M-dimensional base space B, with representations in terms of transformation laws of fields on B belonging to linear representations of H. The gauged generalization of the global diffeomorphisms consists of general diffeomorphisms (or coordinate transformations) on a base space together with a local action of H on the fields. The particular applications of the scheme to space-time symmetries is discussed in terms of Lagrangians, field equations, currents, and source identities. Journal of Mathematical Physics is copyrighted by The American Institute of Physics.
Resumo:
A formalism for extracting the conformations of a proline ring based on the bistable jump model of R. E. London [(1978) J. Am. Chem. Soc. 100, 2678-2685] from 13C spin-lattice relaxation times (T1) is given. The method is such that the relaxation data are only partially used to generate the conformations; these conformations are constrained to satisfy the rest of the relaxation data and to yield acceptable ring geometry. An alternate equation for T1 of 13C nuclei to that of London is given. The formalism is illustrated through an example.
Resumo:
The problem of decaying states and resonances is examined within the framework of scattering theory in a rigged Hilbert space formalism. The stationary free,''in,'' and ''out'' eigenvectors of formal scattering theory, which have a rigorous setting in rigged Hilbert space, are considered to be analytic functions of the energy eigenvalue. The value of these analytic functions at any point of regularity, real or complex, is an eigenvector with eigenvalue equal to the position of the point. The poles of the eigenvector families give origin to other eigenvectors of the Hamiltonian: the singularities of the ''out'' eigenvector family are the same as those of the continued S matrix, so that resonances are seen as eigenvectors of the Hamiltonian with eigenvalue equal to their location in the complex energy plane. Cauchy theorem then provides for expansions in terms of ''complete'' sets of eigenvectors with complex eigenvalues of the Hamiltonian. Applying such expansions to the survival amplitude of a decaying state, one finds that resonances give discrete contributions with purely exponential time behavior; the background is of course present, but explicitly separated. The resolvent of the Hamiltonian, restricted to the nuclear space appearing in the rigged Hilbert space, can be continued across the absolutely continuous spectrum; the singularities of the continuation are the same as those of the ''out'' eigenvectors. The free, ''in'' and ''out'' eigenvectors with complex eigenvalues and those corresponding to resonances can be approximated by physical vectors in the Hilbert space, as plane waves can. The need for having some further physical information in addition to the specification of the total Hamiltonian is apparent in the proposed framework. The formalism is applied to the Lee–Friedrichs model and to the scattering of a spinless particle by a local central potential. Journal of Mathematical Physics is copyrighted by The American Institute of Physics.
Resumo:
Functional dependencies in relational databases are investigated. Eight binary relations, viz., (1) dependency relation, (2) equipotence relation, (3) dissidence relation, (4) completion relation, and dual relations of each of them are described. Any one of these eight relations can be used to represent the functional dependencies in a database. Results from linear graph theory are found helpful in obtaining these representations. The dependency relation directly gives the functional dependencies. The equipotence relation specifies the dependencies in terms of attribute sets which functionally determine each other. The dissidence relation specifies the dependencies in terms of saturated sets in a very indirect way. Completion relation represents the functional dependencies as a function, the range of which turns out to be a lattice. Depletion relation which is the dual of the completion relation can also represent functional dependencies and similarly can the duals of dependency, equipotence, and dissidence relations. The class of depleted sets, which is the dual of saturated sets, is defined and used in the study of depletion relations.
Resumo:
The phenomenon of drop formation at conical tips under near zero flow conditions has been investigated using a theoretical approach. The analysis permits the prediction of drop profile and drop volume, until the onset of instability. A semiempirical approach based on the similarity of drop shapes has been adopted to predict the detaching drop volumes at conical tips. The effects of base diameter of the cone, cone angle, interfacial tension, and the densities of the drop and the surrounding fluid on the maximum and detached drop volumes are predicted.
Resumo:
We discuss the consistency, unitarity and Lorentz invariance of an anomalous U(1) gauge theory in four dimensions. Our analysis is based on an effective low-energy action valid in the chiral symmetry broken phase. The allegedly bad properties of anomalous theories (except non-renormalizability) are examined. It is shown that, in the low-energy context, the theory can be consistently and unitarily quantised, and is formally Lorentz covariant.
Resumo:
The necessary and sufficient condition for the existence of the one-parameter scale function, the /Munction, is obtained exactly. The analysis reveals certain inconsistency inherent in the scaling theory, and tends to support Motts’ idea of minimum metallic conductivity.
Resumo:
A perturbative scaling theory for calculating static thermodynamic properties of arbitrary local impurity degrees of freedom interacting with the conduction electrons of a metal is presented. The basic features are developments of the ideas of Anderson and Wilson, but the precise formulation is new and is capable of taking into account band-edge effects which cannot be neglected in certain problems. Recursion relations are derived for arbitrary interaction Hamiltonians up to third order in perturbation theory. A generalized impurity Hamiltonian is defined and its scaling equations are derived up to third order. The strategy of using such perturbative scaling equations is delineated and the renormalization-group aspects are discussed. The method is illustrated by applying it to the single-impurity Kondo problem whose static properties are well understood.