108 resultados para Laplace inverse transform
Resumo:
We have modeled the rotation curves of 21 galaxies observed by Amram et al. (1992), by combining the effects of rigid rotation, gravity, and turbulence. The main motivation behind such modeling is to study the formation of coherent structures in turbulent media and explore its role in the large-scale structures of the universe. The values of the parameters such as mass, turbulent velocity, and angular velocity derived from the rotation curve fits are in good agreement with those derived from the prevalent models.
Resumo:
In this paper a pipelined ring algorithm is presented for efficient computation of one and two dimensional Fast Fourier Transform (FFT) on a message passing multiprocessor. The algorithm has been implemented on a transputer based system and experiments reveal that the algorithm is very efficient. A model for analysing the performance of the algorithm is developed from its computation-communication characteristics. Expressions for execution time, speedup and efficiency are obtained and these expressions are validated with experimental results obtained on a four transputer system. The analytical model is then used to estimate the performance of the algorithm for different number of processors, and for different sizes of the input data.
Resumo:
We introduce the inverse of the Hermitian operator (acircacirc†) and express the Boson inverse operators acirc-1 and acirc†-1 in terms of the operators acirc, acirc† and (acircacirc†)-1. We show that these Boson inverse operators may be realized by Susskind-Glogower phase operators. In this way, we find a new two-photon annihilation operator and denote it as acirc2(acircacirc†)-1. We show that the eigenstates of this operator have interesting non-classical properties. We find that the eigenstates of the operators (acircacirc†)-1 acirc2, acirc(acircacirc†)-1 acirc and acirc2(acircacirc†)-1 have many similar properties and thus they constitute a family of two-photon annihilation operators.
Resumo:
Computerized tomography is an imaging technique which produces cross sectional map of an object from its line integrals. Image reconstruction algorithms require collection of line integrals covering the whole measurement range. However, in many practical situations part of projection data is inaccurately measured or not measured at all. In such incomplete projection data situations, conventional image reconstruction algorithms like the convolution back projection algorithm (CBP) and the Fourier reconstruction algorithm, assuming the projection data to be complete, produce degraded images. In this paper, a multiresolution multiscale modeling using the wavelet transform coefficients of projections is proposed for projection completion. The missing coefficients are then predicted based on these models at each scale followed by inverse wavelet transform to obtain the estimated projection data.
Resumo:
Solution of generalized eigenproblem, K phi = lambda M phi, by the classical inverse iteration method exhibits slow convergence for some eigenproblems. In this paper, a modified inverse iteration algorithm is presented for improving the convergence rate. At every iteration, an optimal linear combination of the latest and the preceding iteration vectors is used as the input vector for the next iteration. The effectiveness of the proposed algorithm is demonstrated for three typical eigenproblems, i.e. eigenproblems with distinct, close and repeated eigenvalues. The algorithm yields 29, 96 and 23% savings in computational time, respectively, for these problems. The algorithm is simple and easy to implement, and this renders the algorithm even more attractive.
Resumo:
Monte Carlo and molecular dynamics simulations on an Ar-13 cluster in zeolite L have been carried out at a series of temperatures to understand the rigid-nonrigid transition corresponding to the solid-liquid transition exhibited by the free Ar-13 cluster. The icosahedral geometry of the free cluster is no longer preferred when the cluster is confined in the zeolite. The root-mean-squared pair distance fluctuation, delta, exhibits a sharp, well-defined rigid-nonrigid transition at 17 K as compared to 27 K for the free cluster. Multiple peaks in the distribution of short-time averages of the guest-host interaction energy indicate coexistence of two phases.; It is shown that this transition is associated with the inner atoms becoming mobile at 17 K even while the outer layer atoms, which are in close proximity to the zeolitic wall, continue to be comparatively immobile. This may be contrasted with the melting of large free clusters of 40 or more atoms which exhibit surface melting. Guest-host interactions seem to play a predominant role in determining the properties of confined clusters. We demonstrate that the volume of the cluster increases rather sharply at 17 and 27 K respectively for the confined and the free cluster. Power spectra suggest that the motion of the inner atoms is generally parallel to the atoms which form the cage wall.
Resumo:
An analytical method is developed for solving an inverse problem for Helmholtz's equation associated with two semi-infinite incompressible fluids of different variable refractive indices, separated by a plane interface. The unknowns of the inverse problem are: (i) the refractive indices of the two fluids, (ii) the ratio of the densities of the two fluids, and (iii) the strength of an acoustic source assumed to be situated at the interface of the two fluids. These are determined from the pressure on the interface produced by the acoustic source. The effect of the surface tension force at the interface is taken into account in this paper. The application of the proposed analytical method to solve the inverse problem is also illustrated with several examples. In particular, exact solutions of two direct problems are first derived using standard classical methods which are then used in our proposed inverse method to recover the unknowns of the corresponding inverse problems. The results are found to be in excellent agreement.
Resumo:
Copolymers of aniline and ortholmeta-amino benzoic acid were synthesized by chemical polymerization using an inverse emulsion pathway. The copolymers are soluble in organic solvents, and the solubility increases with the amino benzoic acid content in the feed. The reaction conditions were optimized with emphasis on high yield and relatively good conductivity (2.5 X 10(-1) S cm(-1)). The copolymers were characterized by a number of techniques including UV-vis, FT-IR, FT-Raman, EPR and NNM spectroscopy, thermal analysis, SEM and conductivity. The influence of the carboxylic acid group ring substituent on the copolymers is investigated. The spectral studies reveal that the amino benzoic acid groups restrict the conjugation along the polymer chain. The SEM micrographs of the copolymers reveal regions of amorphous and crystalline domain. Thermal studies indicate a marginally higher thermal stability for poly(aniline-co-m-amino benzoic acid) compared to poly(aniline-co-o-amino benzoic acid). (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
A class of I boundary value problems involving propagation of two-dimensional surface water waves, associated with water of uniform finite depth, against a plane vertical wave maker is investigated under the assumption that the surface is covered by a thin sheet of ice. It is assumed that the ice-cover behaves like a thin isotropic elastic plate. Then the problems under consideration lead to those of solving the two-dimensional Laplace equation in a semi-infinite strip, under Neumann boundary conditions on the vertical boundary as well as on one of the horizontal boundaries, representing the bottom of the fluid region, and a condition involving upto fifth order derivatives of the unknown function on the top horizontal ice-covered boundary, along with the two appropriate edge-conditions, at the ice-covered corner, ensuring the uniqueness of the solutions. The mixed boundary value problems are solved completely, by exploiting the regularity property of the Fourier cosine transform.
Resumo:
We propose a method to encode a 3D magnetic resonance image data and a decoder in such way that fast access to any 2D image is possible by decoding only the corresponding information from each subband image and thus provides minimum decoding time. This will be of immense use for medical community, because most of the PET and MRI data are volumetric data. Preprocessing is carried out at every level before wavelet transformation, to enable easier identification of coefficients from each subband image. Inclusion of special characters in the bit stream facilitates access to corresponding information from the encoded data. Results are taken by performing Daub4 along x (row), y (column) direction and Haar along z (slice) direction. Comparable results are achieved with the existing technique. In addition to that decoding time is reduced by 1.98 times. Arithmetic coding is used to encode corresponding information independently
Resumo:
Considering a general linear model of signal degradation, by modeling the probability density function (PDF) of the clean signal using a Gaussian mixture model (GMM) and additive noise by a Gaussian PDF, we derive the minimum mean square error (MMSE) estimator.The derived MMSE estimator is non-linear and the linear MMSE estimator is shown to be a special case. For speech signal corrupted by independent additive noise, by modeling the joint PDF of time-domain speech samples of a speech frame using a GMM, we propose a speech enhancement method based on the derived MMSE estimator. We also show that the same estimator can be used for transform-domain speech enhancement.
Resumo:
Swarm Intelligence techniques such as particle swarm optimization (PSO) are shown to be incompetent for an accurate estimation of global solutions in several engineering applications. This problem is more severe in case of inverse optimization problems where fitness calculations are computationally expensive. In this work, a novel strategy is introduced to alleviate this problem. The proposed inverse model based on modified particle swarm optimization algorithm is applied for a contaminant transport inverse model. The inverse models based on standard-PSO and proposed-PSO are validated to estimate the accuracy of the models. The proposed model is shown to be out performing the standard one in terms of accuracy in parameter estimation. The preliminary results obtained using the proposed model is presented in this work.
Resumo:
Theoretical approaches are of fundamental importance to predict the potential impact of waste disposal facilities on ground water contamination. Appropriate design parameters are, in general, estimated by fitting the theoretical models to a field monitoring or laboratory experimental data. Double-reservoir diffusion (Transient Through-Diffusion) experiments are generally conducted in the laboratory to estimate the mass transport parameters of the proposed barrier material. These design parameters are estimated by manual parameter adjusting techniques (also called eye-fitting) like Pollute. In this work an automated inverse model is developed to estimate the mass transport parameters from transient through-diffusion experimental data. The proposed inverse model uses particle swarm optimization (PSO) algorithm which is based on the social behaviour of animals for finding their food sources. Finite difference numerical solution of the transient through-diffusion mathematical model is integrated with the PSO algorithm to solve the inverse problem of parameter estimation.The working principle of the new solver is demonstrated by estimating mass transport parameters from the published transient through-diffusion experimental data. The estimated values are compared with the values obtained by existing procedure. The present technique is robust and efficient. The mass transport parameters are obtained with a very good precision in less time