249 resultados para LONG WAVES
Resumo:
A novel type of magnesium-air primary cell has been evolved which employs non-polluting and abundantly available materials. The cell is based on the scheme Mg/Mg(NO3)2, NaNO2, H20/Q(C). The magnesium anode utilization is about 90% at a current density of 20 mAcm -2. The anode has been shown to exhibit a low open-circuit corrosion, a relatively uniform pattern of corrosion and a low negative difference effect in the electrolyte developed above as compared to the conventional halide or perchlorate electrolytes. In the usual air-depolarized mode of operation, the cell has been found to be capable of continuous discharge over several months at a constant cell voltage of about 1 V and a current density of 1 mAcm -2 at the cathode. The long service-life capability arises from the formation of a protective film on the porous carbon cathode and fast sedimentation of the anodic product (magnesium hydroxide) in the electrolyte. The cell has a shelf-life in the activated state of about a year due to the low open-circuit corrosion of the anode. These favourable features suggest the practical feasibility of developing economical, long-life, non-reserve magnesium-air ceils for diverse applications using magnesium anodes with a high surface area and porous carbon-air electrodes.
Resumo:
A pair of semi-linear hyperbolic partial differential equations governing the slow variations in amplitude and phase of a quasi-monochromatic finite-amplitude Love-wave on an isotropic layered half-space is derived using the method of multiple-scales. The analysis of the exact solution of these equations for a signalling problem reveals that the amplitude of the wave remains constant along its characteristic and that the phase of the wave increases linearly behind the wave-front.
Resumo:
The nonlinear propagation characteristics of surface acoustic waves on an isotropic elastic solid have been studied in this paper. The solution of the harmonic boundary value problem for Rayleigh waves is obtained as a generalized Fourier series whose coefficients are proportional to the slowly varying amplitudes of the various harmonics. The infinite set of coupled equations for the amplitudes when solved exhibit an oscillatory slow variation signifying a continuous transfer of energy back and forth among the various harmonics. A conservation relation is derived among all the harmonic amplitudes.
Resumo:
Cell-free preparations of rat sciatic nerve were found to catalyze the reduction of fatty acid to alcohol in the presence of NADPH as reducing cofactor. The reductase was membrane-bound and associated primarily with the microsomal fraction. When fatty acid was the substrate, ATP, coenzyme A (CoA), and Mg2+ were required, indicating the formation of acyl CoA prior to reduction. When acyl CoA was used as substrate, the presence of albumin was required to inhibit acyl CoA hydro-lase activity. Fatty acid reductase activity was highest with palmitic and stearic acids, and somewhat lower with lauric and myristic acids. It was inhibited by sulfhydryl reagents, indicating the participation of thiol groups in the reduction. Only traces of long-chain aldehyde could be detected or trapped as semicarbazone. Fatty acid reductase activity in rat sciatic nerve was highest between the second and tenth days after birth and decreased substantially thereafter. Microsomal preparations of sciatic nerve from 10-day-old rats exhibited about four times higher fatty acid reductase activity than brain or spinal cord microsomes from the same animals. Wallerian degeneration and regeneration of adult rat sciatic nerve resulted in enhanced fatty acid reductase activity, which reached a maximum at about 12 days after crush injury.
Resumo:
The unified structure of steady, one-dimensional shock waves in argon, in the absence of an external electric or magnetic field, is investigated. The analysis is based on a two-temperature, three-fluid continuum approach, using the Navier—Stokes equations as a model and including non-equilibrium collisional as well as radiative ionization phenomena. Quasi charge neutrality and zero velocity slip are assumed. The integral nature of the radiative terms is reduced to analytical forms through suitable spectral and directional approximations. The analysis is based on the method of matched asymptotic expansions. With respect to a suitably chosen small parameter, which is the ratio of atom-atom elastic collisional mean free-path to photon mean free-path, the following shock morphology emerges: within the radiation and electron thermal conduction dominated outer layer occurs an optically transparent discontinuity which consists of a chemically frozen heavy particle (atoms and ions) shock and a collisional ionization relaxation layer. Solutions are obtained for the first order with respect to the small parameter of the problem for two cases: (i) including electron thermal conduction and (ii) neglecting it in the analysis of the outer layer. It has been found that the influence of electron thermal conduction on the shock structure is substantial. Results for various free-stream conditions are presented in the form of tables and figures.
Resumo:
Using a new embedding technique, short time exact analytical solution of a two-dimensional axisymmetric problem of solidification of a superheated melt in a long cylindrical mold is presented in this paper. The prescribed flux could be space and time dependent. The method of solution is simple and is applicable to a variety of problems and consists of assuming suitable fictitious initial temperatures for some suitable fictitious extensions of the actual regions. The numerical results indicate that even a small solidified thickness can affect the initial temperature of the melt appreciably.
Resumo:
The Alfvén surface waves propagating along a viscous conducting fluid-vacuum interface have been studied. It is found that besides the "ordinary" Alfvén surface waves, modified by viscosity effects, the interface can support a second mode which is the over-damped solution of the dispersion equation. The possibility of observation of a two-mode structure of Alfvén surface waves in the laboratory and in the solar coronal plasmas is discussed.
Resumo:
By using a perturbation technique, the Korteweg-de Vries equation is derived for a mixture of warm-ion fluid and hot, isothermal electrons. Stationary solutions are obtained for this equation and are compared with the corresponding solutions for a mixture consisting of cold-ion fluid and hot, isothermal electrons.
Resumo:
The Alfven surface waves can arise due to the discontinuity in the Alfven speed across the interface along which these waves propagate. This note studies the relationship between v A1 and v A2 which is required for the existence of Alfven surface waves in low-beta plasma.
Resumo:
A new shock wave generator has been designed, fabricated and tested for preservative impregnation studies into wood slats used for manufacturing pencils in the Shock Waves Laboratory, IISc, Bangalore. Series of experiments have been carried out in the laboratory to achieve satisfactory preservative impregnation into VATTA wood slats. The experiments have shown that it is indeed possible to impregnate preservatives into VATTA wood slats using shock waves and the depth of penetration and the retention of preservatives by wood slats is as good as the conventional methods. This method is expected to result in substantial reduction in the treatment process time compared to conventional methods that are currently being used by the pencil manufacturing industry.
Resumo:
The authors derive the Korteweg-de Vries equation in a multicomponent plasma that includes any number of positive and negative ions. The solitary wave solutions are also found explicitly for the case of isothermal and non-isothermal electrons.
Resumo:
The nonlinear mode coupling between two co-directional quasi-harmonic Rayleigh surface waves on an isotropic solid is analysed using the method of multiple scales. This procedure yields a system of six semi-linear hyperbolic partial differential equations with the same principal part governing the slow variations in the (complex) amplitudes of the two fundamental, the two second harmonic and the two combination frequency waves at the second stage of the perturbation expansion. A numerical solution of these equations for excitation by monochromatic signals at two arbitrary frequencies, indicates that there is a continuous transfer of energy back and forth among the fundamental, second harmonic and combination frequency waves due to mode coupling. The mode coupling tends to be more pronounced as the frequencies of the interacting waves approach each other.
Resumo:
A systematic derivation of the approximate coupled amplitude equations governing the propagation of a quasi-monochromatic Rayleigh surface wave on an isotropic solid is presented, starting from the non-linear governing differential equations and the non-linear free-surface boundary conditions, using the method of mulitple scales. An explicit solution of these equations for a signalling problem is obtained in terms of hyperbolic functions. In the case of monochromatic excitation, it is shown that the second harmonic amplitude grows initially at the expense of the fundamental and that the amplitudes of the fundamental and second harmonic remain bounded for all time.
Resumo:
Using a perturbation technique, we derive Modified Korteweg—de Vries (MKdV) equations for a mixture of warm-ion fluid (γ i = 3) and hot and non-isothermal electrons (γ e> 1), (i) when deviations from isothermality are finite, and (ii) when deviations from isothermality are small. We obtain stationary solutions for these equations, and compare them with the corresponding solutions for a mixture of warm-ion fluid (γ i = 3) and hot, isothermal electrons (γ i = 1).